Novel boundary element based solvers for light scattering from complex ice crystals
基于新型边界元的求解器,用于复杂冰晶的光散射
基本信息
- 批准号:1777897
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Met Office operational global model and its its configurations over and under predict the cloudy short-wave radiative effect by ~30 Wm-2 to - 40 Wm-2 when compared against the latest observations. As part of ongoing significant investments by the Met Office and space agencies in understanding and reducing these errors an accurate understanding of the scattering and absorption properties of ice crystals is required. In the limit of very large particles, at solar wavelengths, ray tracing has been successfully used for simulating light-scattering from ice crystals. However, in the practically very important mid-size and small ice range, ray tracing is not applicable and direct simulation methods are required that solve the underlying Maxwell equation. Here, standard T-Matrix techniques are popular tools in the athmospheric research community, which are restricted to rather simple homogeneous shapes. An alternative are boundary element methods (BEM), a type of direct solution techniques that do not suffer from the geometric restrictions of standard T-Matrix approaches. However, due to their significant higher implementational complexity these have been so far little used in the climate research community. Since 2011, a novel open-source BEM code (BEM++, www.bempp.org) has been in development at UCL, funded by EPSRC grants EP/I030042/1 and EP/K03829X/1. BEM++ was previously used for a first feasibility study for the simulation of light-scattering from complex ice crystal configurations that are out of reach of currently publicly available T-Matrix methods (ice crystals with varying internal air cavities and bullet-rosettes). We are planning to build on this very promising initial study to develop a powerful framework for the simulation of light-scattering from ice crystals, including: Fast High-Frequency solvers for Maxwell. In recent years, fast directional FMM methods for the oscillatory kernels arising in Maxwell BEM have been developed that scale almost optimally with respect to the wavenumber. Together with operator preconditioning for the Maxwell equations these lead to fast solvers across a wide range of frequencies. Implementation of such methods in BEM++ is ongoing and together with the CASE Student we will apply and investigate the scalability of these methods for complex ice crystal configurations at medium to high frequencies. This will bridge the gap between geometric optics and electromagnetism.[Time: 1 year] Simulation of electromagnetic scattering from ice crystals with internal inhomogeneities. We apply the method to the microwave and submillimetre regions of the spectrum to take advantage of new instrumentation developed by the Met Office. At the larger particle sizes of relevance to these incident frequencies, the particle volume is likely to consist of mixtures of ice, water and air. To simulate random inhomogeneities in ice crystals we will couple finite element methods (FEM) with a BEM for the exterior scattering problem. [Time: 1.5 year] Complex multiple scattering configurations. We plan to extend the BEM based solution capabilities to arrays of ice crystals with random orientation. In work by Ganesh, Hesthaven and Stamm a reduced basis approach was proposed in which individual scattering computations of electromagnetic particles are used to accelerate the computation of the scattered field of an array of particles. Based on the BEM++ solver capabilities we will build on this approach and apply it to arrays of ice crystals. [Time: 1.5 years]
Met Office业务全球模式及其上下配置与最新观测结果相比,预测的多云短波辐射效应约为30Wm-2至-40Wm-2。作为气象局和空间机构正在进行的了解和减少这些误差的重大投资的一部分,需要对冰晶的散射和吸收特性有一个准确的了解。在极大粒子的限制下,在太阳波长下,光线追踪已成功地用于模拟冰晶的光散射。然而,在实际非常重要的中小冰区,射线追踪是不适用的,需要用直接的模拟方法来求解潜在的麦克斯韦方程。在这里,标准的T矩阵技术是大气研究社区中流行的工具,仅限于相当简单的均匀形状。一种替代方法是边界元方法(BEM),这是一种直接求解技术,不受标准T-矩阵方法的几何限制。然而,由于它们的实施复杂性显著较高,到目前为止,这些方法在气候研究界还很少使用。自2011年以来,伦敦大学学院一直在开发一种新的开源BEM程序(BEM++,www.bempp.org),该程序得到EPSRC赠款EP/I030042/1和EP/K03829X/1的资助。BEM++之前被用于模拟复杂冰晶结构的光散射的第一个可行性研究,这些结构是目前公开可用的T-Matrix方法(具有不同内部气腔和子弹花环的冰晶体)无法实现的。我们计划在这项非常有希望的初步研究的基础上,开发一个强大的框架来模拟冰晶的光散射,包括:Maxwell的快速高频解算器。近年来,针对Maxwell边界元中产生的振荡核的快速定向FMM方法得到了发展,其尺度几乎是关于波数的最优尺度。再加上麦克斯韦方程的算子预条件,这些导致了在广泛的频率范围内的快速求解器。这些方法在BEM++中的实施正在进行中,我们将与案例学生一起应用和研究这些方法在中高频复杂冰晶配置中的可扩展性。这将在几何光学和电磁学之间架起一座桥梁。[时间:1年]内部不均匀冰晶电磁散射的模拟。我们将该方法应用于微波和亚毫米光谱区域,以利用英国气象局开发的新仪器。在与这些入射频率相关的较大颗粒尺寸下,颗粒体积可能由冰、水和空气的混合物组成。为了模拟冰晶中的随机不均匀,我们将有限元方法与外部散射问题的边界元相结合。[时间:1.5年]复杂的多重散射配置。我们计划将基于边界元的解决方案能力扩展到具有随机取向的冰晶阵列。在Ganesh,Hesthaven和Stamm的工作中,提出了一种简化基方法,其中使用电磁粒子的单独散射计算来加速计算粒子阵列的散射场。基于BEM++解算器的功能,我们将在此基础上构建该方法,并将其应用于冰晶阵列。[时间:一年半]
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerated Calderón preconditioning for Maxwell transmission problems
针对麦克斯韦传输问题的加速卡尔德隆预处理
- DOI:10.1016/j.jcp.2022.111099
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Kleanthous A
- 通讯作者:Kleanthous A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
不可压流体力学方程中的一些问题
- 批准号:10771177
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:面上项目
关于任意截面导体壁中的环状形非圆截面等离子体稳定性的研究
- 批准号:10375050
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mapping protein signatures to single allele chromatin topologies at genomic resolution
在基因组分辨率下将蛋白质特征映射到单等位基因染色质拓扑
- 批准号:
10649096 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fundamental Insights into Multi-element Grain Boundary Segregation in Nanocrystalline Alloys
纳米晶合金中多元素晶界偏析的基本见解
- 批准号:
2343682 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
High-throughput Discovery of Novel Genome Organization Regulators
新型基因组组织调节因子的高通量发现
- 批准号:
10777403 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10698166 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidation of the hydrodynamics in newly-arised innovative floating systems toward highly-efficient ocean renewable energy conversion
阐明新出现的创新浮动系统中的流体动力学,以实现高效的海洋可再生能源转换
- 批准号:
22K14430 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Finite-element implementation of periodic boundary conditions for 1D wave propagation
一维波传播周期性边界条件的有限元实现
- 批准号:
574992-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10515457 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant