Optimal control of driven quantum many-body systems
驱动量子多体系统的最优控制
基本信息
- 批准号:1801549
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Driven systems offer an exciting analytic tool to investigate clean realizations of solid state models, featuring high temperature super-conductivity, fractional quantum Hall effect, spin Hall effect and states with topological order. One of the most promising implementations is based on optical lattices in which atoms are trapped in a standing laser field. Optical lattices permit to trap atoms in lattices of different geometries, and the dynamics of the atoms can be controlled by periodically modulating (shaking) the lattice. A central limitation on current experiments is that the shaking heats up the sample, what ultimately destroys the desired effects. In practice, heating is controlled merely in terms of the choice of frequency with which the system is shaken. If this frequency is far off the resonance frequencies of the system, then the heating is not too large. One would, however, expect that heating can be substantially reduced if destructive interference prevents atoms from occupying highly excited states. For this purpose, one can drive the system poly-chromatically and identify driving profiles that minimize the occurrence of undesired processes. For reaching such a goal different techniques can be employed. On the one hand a variety of perturbative techniques have been employed to deal with periodically driven systems. It provides a path to analytically find optimal modulation of the system in order to engineer effective dynamics of interest while ensuring the suppression of detrimental side-effects. This approach is limited by an exponential increase in complexity when many body interactions come into play. Another way would be through the use of Machine Learning (ML) techniques. ML has been successfully employed in finding optimal control schemes for classical systems, however only more recently it has been successfully applied to quantum system. Research has been driven by results showing in that solving any optimization of quantum control problem should be easy. Examples of the use of ML for quantum systems include the preparation of target quantum states with high fidelities, cooling procedures of ultra-cold gazes, shaping of ultrafast light pulses, and coherent manipulation of matter waves. Among the plethora of possible techniques, (physical) model-free approaches (e.g. reinforcement learning, Bayesian inferences, evolutionary algorithms) provide interesting alternatives to the more commonly used gradient descent methods. This project is in collaboration with an experimental group at Cambridge setting up modulated optical lattices, with whom I can discuss realistic experimental constraints and the viability of the control schemes developed. In order to prepare for the project I did a placement at Microsoft Research to familiarize myself with ML (reinforcement learning) techniques.Driven systems offer an exciting analytic tool to investigate clean realizations of solid state models, featuring high temperature super-conductivity, fractional quantum Hall effect, spin Hall effect and states with topological order. One of the most promising implementations is based on optical lattices in which atoms are trapped in a standing laser field. Optical lattices permit to trap atoms in lattices of different geometries, and the dynamics of the atoms can be controlled by periodically modulating (shaking) the lattice. A central limitation on current experiments is that the shaking heats up the sample, what ultimately destroys the desired effects. In practice, heating is controlled merely in terms of the choice of frequency with which the system is shaken. If this frequency is far off the resonance frequencies of the system, then the heating is not too large. One would, however, expect that heating can be substantially reduced if destructive interference prevents atoms from occupying highly excited states.
驱动系统提供了一个令人兴奋的分析工具来研究固态模型的清洁实现,具有高温超导性,分数量子霍尔效应,自旋霍尔效应和拓扑有序状态。其中最有前途的实现是基于光学晶格中的原子被困在一个常设的激光场。光学晶格允许将原子捕获在不同几何形状的晶格中,并且可以通过周期性地调制(摇动)晶格来控制原子的动力学。当前实验的一个核心限制是振动会加热样本,最终会破坏所需的效果。在实践中,加热仅根据振动系统的频率的选择来控制。如果该频率远离系统的谐振频率,则加热不会太大。然而,如果相消干涉阻止原子占据高激发态,人们会期望加热可以大大减少。为此,可以多色地驱动系统,并识别使不期望的过程的发生最小化的驱动曲线。为了达到这样的目标,可以采用不同的技术。一方面,各种微扰技术已被用来处理周期驱动系统。它提供了一条途径来分析找到系统的最佳调制,以便设计有效的感兴趣的动态,同时确保抑制有害的副作用。当许多身体相互作用发挥作用时,这种方法受到复杂性指数增加的限制。另一种方法是使用机器学习(ML)技术。ML已经成功地用于寻找经典系统的最优控制方案,然而直到最近它才成功地应用于量子系统。研究的结果表明,解决量子控制问题的任何优化都应该很容易。ML用于量子系统的例子包括制备具有高结晶度的目标量子态,超冷凝视的冷却程序,超快光脉冲的成形以及物质波的相干操纵。在众多可能的技术中,(物理)无模型方法(例如强化学习,贝叶斯推理,进化算法)为更常用的梯度下降方法提供了有趣的替代方案。这个项目是与剑桥的一个实验小组合作建立调制光学晶格,我可以与他们讨论现实的实验约束和控制方案的可行性。为了准备这个项目,我在微软研究院做了一个实习,以熟悉ML(强化学习)技术。驱动系统提供了一个令人兴奋的分析工具,用于研究固态模型的干净实现,具有高温超导性,分数量子霍尔效应,自旋霍尔效应和拓扑有序状态。其中最有前途的实现是基于光学晶格中的原子被困在一个常设的激光场。光学晶格允许将原子捕获在不同几何形状的晶格中,并且可以通过周期性地调制(摇动)晶格来控制原子的动力学。当前实验的一个核心限制是振动会加热样本,最终会破坏所需的效果。在实践中,加热仅根据振动系统的频率的选择来控制。如果该频率远离系统的谐振频率,则加热不会太大。然而,如果相消干涉阻止原子占据高激发态,人们会期望加热可以大大减少。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Quantum Control with Poor Statistics
- DOI:10.1103/prxquantum.1.020322
- 发表时间:2019-09
- 期刊:
- 影响因子:9.7
- 作者:F. Sauvage;F. Mintert
- 通讯作者:F. Sauvage;F. Mintert
Phase diagram and optimal control for n-tupling discrete time crystal
- DOI:10.1088/1367-2630/abb03e
- 发表时间:2020-04
- 期刊:
- 影响因子:3.3
- 作者:Arkadiusz Kuro's;R. Mukherjee;Weronika Golletz;F. Sauvage;Krzysztof Giergiel;F. Mintert;K. Sacha
- 通讯作者:Arkadiusz Kuro's;R. Mukherjee;Weronika Golletz;F. Sauvage;Krzysztof Giergiel;F. Mintert;K. Sacha
Preparation of ordered states in ultra-cold gases using Bayesian optimization
- DOI:10.1088/1367-2630/ab8677
- 发表时间:2020-01
- 期刊:
- 影响因子:3.3
- 作者:R. Mukherjee;F. Sauvage;Harry Xie;R. Loew;F. Mintert
- 通讯作者:R. Mukherjee;F. Sauvage;Harry Xie;R. Loew;F. Mintert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
Lagrange网络实用同步的不连续控制研究
- 批准号:61603174
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
- 批准号:81172643
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
- 批准号:81070069
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
- 批准号:10972233
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
- 批准号:30900646
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
相似海外基金
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2350257 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
A Platform for Hierarchical Data-Driven Design, Fabrication, and Control of Modular Soft Robots with Slender Beams for Locomotion and Manipulation
用于具有细长梁的移动和操纵模块化软机器人的分层数据驱动设计、制造和控制平台
- 批准号:
23K26071 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
- 批准号:
2346484 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Prediction on infectious disease control driven SARS-CoV-2 evolution for living with COVID-19
对传染病控制驱动的 SARS-CoV-2 进化与 COVID-19 生活的预测
- 批准号:
23H03497 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
- 批准号:
10676428 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
- 批准号:
2149480 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Robust Data-Driven Control for Safety-Critical Systems
针对安全关键系统的稳健数据驱动控制
- 批准号:
DP230101014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects