Statistical Signal Processing of Nonstationary Processes

非平稳过程的统计信号处理

基本信息

  • 批准号:
    1859640
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Signal processing commonly relies on the frequency interpretation of wide-sense stationary (WSS) signals, given in terms of the Fourier basis. The spectral representation of a WSS signal is a complex process with orthogonal increments, implicitly assumed to be circularly distributed (rotation-invariant probability density function). Intuitively, this implies that the phase is uniformly distributed in the time-domain, or in other words, is i.i.d.. These assumptions are inadequate to model real-world signals, since they fail to cater for two critical phenomena: (i) determinism; and (ii) nonstationarity.Deterministic spectral processes are noncircular, as their phase is deterministically distributed in the time domain. The sufficient statistics required to fully describe its second-order statistics must therefore include: (i) the Hermitian variance (power spectrum); and (ii) the complementary variance (complementary power spectrum or panorama).Nonstationarity requires the loss of either the Fourier basis, or the orthogonal increment constraint. Relaxing the latter leads to a basis for time-frequency representations, which naturally caters for nonstationarity such as that encountered in cyclostationary processes, an important class of processes that have periodically varying second-order moments, and commonly occurs in science and technology, including communications, meteorology, oceanography, climatology, astronomy, and economics.Most problems in detection, estimation, and signal analysis are phrased in terms of the spectral representation, and with the recently established foundations in spectral noncircularity, there is potential to more accurately model real-world signals. Still, there remain numerous issues and objectives which we aim to address:Theoretical foundations- Ergodic estimation conditions for the autoconvolution and panorama of a single realisation;- Wiener-Khinchin theorem which respectively links the autocorrelation and autoconvolution functions to the power spectrum and panorama;- Maximum likelihood estimator of the sufficient spectral statistics, and the associated Cramer-Rao Lower Bounds;- Proof for spectral noncircularity in nonstationary deterministic signals (e.g. linear chirps), and the manifestation of non-zero cross-frequency spectral statistics (Hermitian and complementary);Determinism in tensor-variate systems using non-Fourier bases- Estimation of the deterministic non-Fourier basis of uni- and tensor-variate systems, using the Koopman operator and its associated spectral expansion from dynamical systems theory;- "Determinism indicators" in non-Fourier bases, analogous to the "circularity coefficient" for noncircular spectral processes in the Fourier basis; Applications- Statistically efficient estimation and detection of a sinusoid in general Gaussian noise (colored and white) using the sufficient spectral statistics;- Maximum entropy spectral estimation accounting for the autocorrelation and autoconvolution;- Surrogate data generation by sampling from a noncircular spectral process, and an improved delay vector variance (DVV) methodology for nonlinearity detection;- Applications which utilise cross-frequency spectral statistics:o Wiener filtering;o Generalised likelihood ratio tests for detecting the number of deterministic components in a signal;o Probabilistic spectral decomposition which assumes the noncircular spectral process is embedded in isotropic circular Gaussian noise;- Multichannel spectral analysis, Wiener filtering, and MUSIC signal processing using tensor decompositions.The theoretical developments will be applied to real-world electrocardiogram (ECG), electroencephalogram (EEG), speech and power system signals.The aforementioned research objectives and applications align with relevant EPSRC research areas, including: - Digital Signal Processing;- Statistics and Applied Probability;- Non-Linear Systems.
信号处理通常依赖于广义平稳(WSS)信号的频率解释,以傅立叶基的形式给出。WSS信号的频谱表示是具有正交增量的复杂过程,隐含地假设为圆形分布(旋转不变概率密度函数)。直观地说,这意味着相位在时域中均匀分布,或者换句话说,是i.i.d.。这些假设不足以模拟真实世界的信号,因为它们不能满足两个关键现象:(i)确定性;和(ii)nonstationarity.Deterministic频谱过程是非圆形的,因为它们的相位是确定性分布在时域中。因此,充分描述其二阶统计量所需的充分统计量必须包括:(i)埃尔米特方差(功率谱);和(ii)互补方差(互补功率谱或全景图)。非平稳性要求傅立叶基或正交增量约束的损失。放松后者导致了时频表示的基础,这自然迎合了非平稳性,例如在循环平稳过程中遇到的非平稳性,循环平稳过程是一类重要的具有周期性变化的二阶矩的过程,并且通常发生在科学和技术中,包括通信,气象学,海洋学,气候学,天文学和经济学。和信号分析是根据频谱表示来措辞的,并且随着最近在频谱非圆性方面建立的基础,有可能更准确地模拟真实世界的信号。尽管如此,仍然存在许多问题和目标,我们的目标是解决:理论基础-遍历估计条件的自卷积和全景的一个单一的实现;-维纳-欣钦定理,分别链接的自相关和自卷积函数的功率谱和全景;-最大似然估计的充分的频谱统计,和相关的克拉美-饶下界;- 非平稳确定性信号中的谱非圆性证明(例如线性啁啾)和非零交叉频谱统计的表现(Hermitian和互补);使用非傅立叶基的张量变量系统中的确定性-单变量和张量变量系统的确定性非傅立叶基的估计,使用Koopman算子及其相关的动力系统理论的频谱扩展;-非傅立叶基中的“确定性指标”,类似于傅立叶基中非圆形频谱过程的“圆形系数”;应用-一般高斯噪声中正弦曲线的统计有效估计和检测- 考虑自相关和自卷积的最大熵谱估计;- 通过从非圆形频谱过程采样来生成替代数据,以及用于非线性检测的改进的延迟向量方差(DVV)方法; o概率谱分解,假设非圆形谱过程嵌入各向同性圆形高斯噪声中;- 使用张量分解的多通道频谱分析,维纳滤波和MUSIC信号处理。理论发展将应用于真实世界的心电图(ECG),脑电图(EEG),上述研究目标和应用与相关的EPSRC研究领域一致,包括:-数字信号处理;-统计和应用概率;-非线性系统。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A lower bound on the tensor rank based on its maximally square matrix unfolding
基于最大方阵展开的张量秩的下界
  • DOI:
    10.1016/j.sigpro.2020.107862
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Calvi G
  • 通讯作者:
    Calvi G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
  • 批准号:
    RGPIN-2020-04661
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Stochastic Machine Learning and Statistical Signal Processing Approaches to Automatic Music Transcription and Visualisation
随机机器学习和统计信号处理方法在自动音乐转录和可视化中的应用
  • 批准号:
    2738835
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
  • 批准号:
    RGPAS-2020-00106
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
  • 批准号:
    RGPAS-2020-00106
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
CIF: Small: Statistical Signal Processing of Social Networks with Behavioral Economics Constraints
CIF:小:具有行为经济学约束的社交网络的统计信号处理
  • 批准号:
    2112457
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
  • 批准号:
    RGPIN-2020-04661
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
  • 批准号:
    RGPIN-2020-04661
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
  • 批准号:
    RGPAS-2020-00106
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Signal and Data Processing Based on Statistical and Graphical Models
基于统计和图形模型的信号和数据处理
  • 批准号:
    RGPIN-2015-04483
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Developing clinical decision support tools to characterize neurodegenerative disorders using biomedical speech signal processing and statistical machi
使用生物医学语音信号处理和统计机器开发临床决策支持工具来表征神经退行性疾病
  • 批准号:
    2261211
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了