Mathematical and Numerical Problems in Seismic Imaging
地震成像中的数学和数值问题
基本信息
- 批准号:1939770
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
GENERAL FIELDThis project is in general area of the numerical analysis ofwave-propagation problems. More specifically, the project focuses on seismic imaging. The context is as follows: Aspart of the seismic exploration process, waves are emitted from a source into the earth and then the reflections ofthese waves from the subsurface of the earth are measured by sensors. For seismic exploration in a marineenvironment, the source and measurement sensors are towed behind boats. The seismic waves can be described bypartial differential equations (PDEs), formulated in the time or frequency domain. Given the sensor measurements,the seismic properties of the subsurface may be inferred. This process is termed Full Waveform Inversion (FWI). FWIrequires the numerical solution of the PDE, to generate predicted data, and an optimisation step, in which thedifference between the predicted and measured data is minimised to obtain an improved modelof the subsurface.EARLY TRAININGAs a student in the CDT SAMBa, Shaunagh will undertake the SAMBa training programme for first-year PhDstudents, including participating in an Integrative Think Tank, and taking units relevant to her project area. Inparticular she will take a reading course on the wave equation and will do a relevant Level 4 course on large-scaleoptimisation. Further details of the training she will undergo are given in the section "Training Requirements" below.FINAL AIMS AND METHODOLOGYThis project will consider different mathematical and numericalproblems in seismic imaging, in particular related to the process of FWI. The mathematical tools used will bemethods from numerical analysis, optimisation, and analysis of PDEs. One initial problem we seek to investigate,which is of great practical interest in petroleum prospecting, and is not considered in the standard approach to FWI,is the optimal positioning of the sensors in order to obtain the best return from the seismic exploration process. Thekey question in this problem would be "given prior information about the likely make-up of the subsurface (in the formof a class of generic models), can one optimise the location of the sensors to retrieve sufficient information about thesubsurface?''
这个项目是波传播问题的数值分析的一般领域。更具体地说,该项目的重点是地震成像。内容如下:作为地震勘探过程的一部分,波从震源发射到地球上,然后用传感器测量这些波从地球地下的反射。对于海洋环境中的地震勘探,震源和测量传感器被拖到船后。地震波可以用时间域或频率域中的偏微分方程(PDE)来描述。根据传感器的测量结果,可以推断地下的地震性质。这个过程被称为全波形反转(FWI)。FWI需要PDE的数值解,以生成预测数据,并进行优化步骤,在此步骤中,预测数据和测量数据之间的差异被最小化,以获得改进的次表面模型。EARLY TRAING作为CDT Samba的学生,Shaunagh将承担针对博士一年级学生的Samba培训计划,包括参加综合智库,并选择与她的项目领域相关的单元。特别是,她将参加一门关于波动方程的阅读课程,并将参加一门关于大规模优化的相关4级课程。她将接受的培训的更多细节在下面的“培训要求”一节中给出。FINAL AIMS和METHODOLOGY这个项目将考虑地震成像中的不同数学和数值问题,特别是与FWI过程相关的问题。所使用的数学工具将从偏微分方程组的数值分析、优化和分析中获得方法。我们试图研究的一个初始问题是传感器的最佳位置,以便从地震勘探过程中获得最佳回报,这在石油勘探中具有很大的实际意义,但在FWI的标准方法中没有考虑到。这个问题的关键问题将是“给出关于地下表面可能组成的先验信息(以一类通用模型的形式),人们能否优化传感器的位置,以检索关于地下表面的足够信息?”
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimisation of seismic imaging via bilevel learning
- DOI:10.48550/arxiv.2301.10762
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Shaunagh Downing;S. Gazzola;I. Graham;E. Spence
- 通讯作者:Shaunagh Downing;S. Gazzola;I. Graham;E. Spence
Optimising Seismic Imaging via Bilevel Learning: Theory and Algorithms
通过双层学习优化地震成像:理论和算法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Downing S
- 通讯作者:Downing S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Adaptive Error-Control Numerical Software for Problems in Mathematical Finance
解决数学金融问题的自适应误差控制数值软件
- 批准号:
464878-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Numerical methods for semi-infinite programming; Mathematical programs with complementary constraints; Global optimization of nonconvex problems by convex underestimators
半无限规划的数值方法;
- 批准号:
5441746 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
Mathematical analysis for inverse problems in mathematical scienes and establishment of numerical methods
数学领域反问题的数学分析和数值方法的建立
- 批准号:
15340027 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical and mathematical analysis to low-dimensional solutions in. mathematical fluid problems
数学流体问题低维解的数值和数学分析
- 批准号:
15340034 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
- 批准号:
13440031 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Mathematical and Numerical Problems in Material Sciences and Fluid Mechanics
数学科学:材料科学和流体力学中的数学和数值问题
- 批准号:
9623137 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: High Order Accurate Numerical Methods for Interface Problems
数学科学:接口问题的高阶精确数值方法
- 批准号:
9626703 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Numerical Methods for Problems in the Physical Sciences
数学科学:物理科学问题的高级数值方法
- 批准号:
9404410 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical and numerical studies of shape sensitivity analysis in fracture problems.
断裂问题中形状敏感性分析的数学和数值研究。
- 批准号:
07640341 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)