Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods

通过正则化方法重构逆问题和病态问题解的数值和数学分析

基本信息

  • 批准号:
    13440031
  • 负责人:
  • 金额:
    $ 9.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

We consider "Numerical Analysis by Regularization Methods" in wide sense, and we have aimed, in the present research, to propose and develop new methods to deal with inverse and ill-posed problems.The computer tomography and non-destructive tests are important technologies to support our present life, and they are typical inverse problems from the mathematical view points. Almost all the inverse problems are ill-posed in the sense of Hadamard, and it is too difficult to analyze them by the standard numerical methods ; ill-posedness of the problems implies numerical instability in computation and prevents reliable construction of numerical solutions. Regularization methods are proposed to reduce ill-posed problems to series of well-posed ones with the regularization terms, but we are obliged to satisfy with numerical treatments of the regularized solutions which are sometimes quite different from the exact ones. In order to seek accurate and reliable numerical solutions for the ill-pose … More d problems, we have clarified demerits of regularization methods, and we have proposed some new techniques and methods for analysis of inverse and ill-posed problems in the present project.The most remarkable results in the present research is to design and to implement new and fast multiple-precision arithmetic on 64-bits computers as a software. The software enables us numerical treatments of ill-posed problems without rounding errors which cause numerical instability. And we propose a new algorithm based on the spectral collocation methods, and we give a keen remark for the choice of the suitable regularization parameter by many numerical experiments using our software.We propose new methods to reconstruct solutions of inverse and ill-posed problems in both mathematics and in computation: localized Dirichlet -Neumann map, regularization based on the filter theory, interval analysis approach etc. And we give some mathematical foundations for the analysis of inverse problems in the near future; analysis of propagation of waves on Fractals, a new mathematical model for brain, keen analysis for cracks in elasticity etc. Less
我们从广义上考虑“正则化方法数值分析”,我们的目标是在本研究中提出和发展新的方法来处理逆和不适定问题。计算机断层扫描和无损检测是支撑我们现代生活的重要技术,从数学的角度来看,它们是典型的逆问题。几乎所有的逆问题在Hadamard意义上都是病态的,用标准数值方法分析它们太困难;问题的病态性意味着计算中的数值不稳定,妨碍了数值解的可靠构造。提出了正则化方法,将不适定问题简化为具有正则化项的一系列良定问题,但我们不得不满足于正则解的数值处理,这些正则解有时与精确解相差很大。为了寻求病态问题的精确、可靠的数值解,我们澄清了正则化方法的缺点,并在本项目中提出了一些分析逆问题和病态问题的新技术和方法。本研究最显著的成果是在64位计算机上以软件的形式设计并实现了新的、快速的多精度算法。该软件使我们能够对病态问题进行数值处理,而不会产生导致数值不稳定的舍入误差。在此基础上提出了一种基于谱配置方法的新算法,并通过软件进行了大量数值实验,对合适正则化参数的选择给出了深刻的评价。我们在数学和计算上提出了新的方法来重建逆问题和不适定问题的解:局部Dirichlet -Neumann映射、基于滤波理论的正则化、区间分析法等。为今后反问题的分析提供了一定的数学基础;分形波的传播分析,新的脑数学模型,弹性裂纹的敏锐分析等。少

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
吉川仁, 西村直志, 小林昭一: "3次元時間域動弾性波動問題における境界積分方程式法のアルゴリズム改良と並列化"土木学会応用力学論文集. 5. 199-206 (2002)
Hitoshi Yoshikawa、Naoshi Nishimura、Shoichi Kobayashi:“三维时域动态弹性波问题的边界积分方程方法的算法改进和并行化”应用力学杂志,日本土木工程学会 5. 199-206 (2002)。 )
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
今井 仁司: "応用解析における多倍長計算"数学. 55巻3号. 316-325 (2003)
Hitoshi Imai:“应用分析中的多重精度计算”,数学,第 55 卷,第 316-325 期。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.kubo, C.Mehring, U.Hehl: "Activity Dynamics and propagation of synchronous S spiking in locally connected random networks"Biological Cybernetics. (in press). (2002)
M.kubo、C.Mehring、U.Hehl:“局部连接随机网络中同步 S 尖峰的活动动力学和传播”生物控制论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤原 宏志, 磯 祐介: "64bit計算環境に適した多倍長数値計算環境の構築と非適切問題の数値計算"情報処理学会論文誌. 44巻3号. 925-931 (2003)
Hiroshi Fujiwara,Yusuke Iso:“适合64位计算环境的多精度数值计算环境的构建以及不适当问题的数值计算”日本信息处理学会汇刊第44卷第3.925-。 931(2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Iso: "Numerical challenge to ill-posed problems by fast multiple-precision system"Theoretical and Applied Mechanics. 50巻6号. 419-424 (2001)
Y.Iso:“快速多精度系统对不适定问题的数值挑战”《理论与应用力学》,第 50 卷,第 6. 419-424 期(2001 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISO Yuusuke其他文献

High-Precision Numerical Computation of Integral Equation of the First Kind
第一类积分方程的高精度数值计算
New Multiple-Precision Arithmetic Environment and its Application fo Numerical Computation
新型多精度运算环境及其在数值计算中的应用

ISO Yuusuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISO Yuusuke', 18)}}的其他基金

Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations
基于分数阶微分方程反问题分析的血液葡萄糖浓度数学模型
  • 批准号:
    16K13774
  • 财政年份:
    2016
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Proposal of a new governing equation of crack propagation caused by change of temperature and its analysis
温度变化引起裂纹扩展的新控制方程的提出及其分析
  • 批准号:
    25610031
  • 财政年份:
    2013
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Estimation of modeling errors and their regularization in applied inverse problems
应用反问题中建模误差的估计及其正则化
  • 批准号:
    23654034
  • 财政年份:
    2011
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Breakthrough in numerical analysis and numerical computation related with infinitely-precision arithmetic
无限精度算术相关数值分析和数值计算的突破
  • 批准号:
    22340018
  • 财政年份:
    2010
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Foundation of high accuracy computational methods on the multiple-precision computer environment and its applications to analysi of inverse problems
多精度计算机环境下高精度计算方法的建立及其在反问题分析中的应用
  • 批准号:
    19340022
  • 财政年份:
    2007
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
  • 批准号:
    16340024
  • 财政年份:
    2004
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Study of the Boundary Element Method and its Application to Inverse
边界元法的数学研究及其在反演中的应用
  • 批准号:
    10490018
  • 财政年份:
    1998
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical Analysis for Ill-posed Problems Related with Engineering
工程不适定问题的数值分析
  • 批准号:
    07309021
  • 财政年份:
    1995
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
  • 批准号:
    1808766
  • 财政年份:
    2018
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 9.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了