Critical exponents in sandpiles
沙堆中的临界指数
基本信息
- 批准号:1943826
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General field:The Abelian sandpile is a mathematical model for avalanches, in which particles move around according to simple rules. The basic challenge is to understand how the addition of a new particle triggers a long period of activity with lots of other particles moving. The study will involve various areas of probability theory that are at the forefront of current research: uniform spanning forests, loop-erased random walks and random interlacements. Early training (6 - 12 months):I will need to learn about the loop-erased random walk in d >= 5 by Lawler (1991), the estimates on the size of waves by Bhupatiraju, Hanson and Jarai (2016), and some results on interlacements by Sznitman (2012). In addition, in semester 1, I will attend a reading course on Random matrices offered by the department and the taught course centre (TCC) course Riemann's Hypothesis.Final goals/aims and methodology:The aim is to quantify the probability of large avalanches in terms of so-called critical exponents. In my undergraduate internship in Summer 2016, we found numerically an approximate value of one such critical exponent, and the funding was received from the London Mathematical Society to continue the work in Summer 2017. The goal of the PhD research is to provide a rigorous mathematical analysis of the results from the simulations. In particular, two aspects connected to the simulation will be considered. The first one is a rigorous analysis of the algorithm designed and used this summer, and to prove an upper bound on its average running time. In addition to lending rigorous support to the use of the algorithm, this problem is interesting in its own right, since we expect that it will shed new light on the mean-field values of critical exponents in sandpiles. The second problem is to prove rigorous upper bounds for the values of the exponent I estimated. This is a much more challenging open question for which only lower bounds are known at the moment.Initially, there will be three parts to carry out this research. The avalanche can be decomposed into so-called waves. The first part will be to show that waves in the box of radius L cannot be much bigger than L to the power of 4. This can be done by adapting methods from existing research. The second part will be to use this research to analyse the algorithm which involved hashing. The main idea is to show that, for small waves, the explored region in the hash table is approximately an interlacement. The reason why this is challenging is that the walks are started near each other. The research results will show that once a random walk is away from its starting point, it forgets where it started and behaves as if an independent random walk path has just been added. Finally, this will be extended to larger waves by drawing on tools from random walks and their intersection probabilities. References:Bhupatiraju, S., Hanson, J., and Jarai, A.A., 2016. Inequalities for Critical Exponents in d-dimensional Sandpiles [Online]. Available from: https://arxiv.org/abs/1602.06475v1 [Accessed 20 Feb 2016]Lawler, G.F., 1991. Intersections of Random Walks. New York: Springer Science+Business Media.Sznitman, A.S., 2012. Random Interlacements and the Gaussian Free Field. The Annals of Probability, 40, pp 2400-2438.
阿贝尔沙堆是雪崩的数学模型,其中粒子根据简单的规则移动。最基本的挑战是理解一个新粒子的加入如何引发一个长时间的活动,同时还有许多其他粒子在移动。这项研究将涉及概率论的各个领域,这些领域是当前研究的前沿:均匀生成森林,环擦除随机行走和随机交错。早期训练(6 - 12个月):我需要学习Lawler(1991)关于d >= 5的循环擦除随机游走,Bhupatiraju,Hanson和Jarai(2016)关于波的大小的估计,以及Sznitman(2012)关于交错的一些结果。此外,在第一学期,我将参加一个阅读课程随机矩阵提供的部门和教学课程中心(TCC)课程黎曼假设。最终目标/目的和方法:目的是量化的概率大雪崩在所谓的临界指数。在我2016年夏季的本科实习中,我们在数值上找到了一个这样的临界指数的近似值,并从伦敦数学学会获得了资金,以便在2017年夏季继续这项工作。博士研究的目标是对模拟结果进行严格的数学分析。特别是,将考虑与模拟有关的两个方面。第一个是对今年夏天设计和使用的算法进行严格分析,并证明其平均运行时间的上限。除了提供严格的支持使用的算法,这个问题是有趣的,在其本身的权利,因为我们希望它将揭示新的光在沙堆中的临界指数的平均场值。第二个问题是要证明严格的上限的值的指数我估计。这是一个更具挑战性的开放性问题,目前只知道下限。雪崩可以分解成所谓的波。第一部分将说明半径为L的盒子中的波不可能比L的4次方大得多。这可以通过调整现有研究的方法来实现。第二部分将利用本文的研究成果对涉及哈希的算法进行分析。主要思想是表明,对于小波,哈希表中探索的区域大致是一个交错。这是具有挑战性的原因是,步行开始彼此接近。研究结果将表明,一旦一个随机行走离开它的起点,它就会忘记它从哪里开始,并且表现得就像一个独立的随机行走路径刚刚被添加。最后,通过利用随机游动及其相交概率的工具,这将扩展到更大的波。参考文献:Bhupatiraju,S.,汉森,J.,和加赖,AA,2016. D维沙堆中临界指数的不等式[在线]。可从:https://arxiv.org/abs/1602.06475v1 [2016年2月20日访问]Lawler,G.F.,1991.随机漫步的交叉点纽约:施普林格科学+商业媒体。2012.随机交错和高斯自由场。《概率年鉴》,40,2400-2438页。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toppling and height probabilities in sandpiles
沙堆的倾倒和高度概率
- DOI:10.1088/1742-5468/ab2ccb
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Járai A
- 通讯作者:Járai A
Asymptotic Height Distribution in High-Dimensional Sandpiles
高维沙堆中的渐近高度分布
- DOI:10.1007/s10959-019-00962-5
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Járai A
- 通讯作者:Járai A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分双曲系统的遍历性研究
- 批准号:11001284
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Percolation on hierarchical lattices: cluster sizes and critical exponents
分层格子上的渗透:簇大小和临界指数
- 批准号:
573692-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Research on variational problems for the functionals with variable exponents
变指数泛函变分问题研究
- 批准号:
20K03707 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Scale Asymptotics of Random Spatial Processes: Scaling Exponents, Limit Shapes, and Phase Transitions
随机空间过程的大规模渐近:缩放指数、极限形状和相变
- 批准号:
1855688 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Lyapunov Exponents and Spectral Properties of Aperiodic Structures
非周期结构的李亚普诺夫指数和谱性质
- 批准号:
EP/S010335/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grant
Critical properties of quantum melting phase transitions
量子熔化相变的关键性质
- 批准号:
18K13502 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Lyapunov exponents and invariant measures of deterministic maps and random maps
确定性映射和随机映射的李雅普诺夫指数和不变测度
- 批准号:
526905-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Exponents for representations of the symmetric groups and modular forms
对称群和模形式表示的指数
- 批准号:
527759-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Evaluation of error exponents and reducing complexity on the decision feedback schemes using linear codes and LDPC codes
使用线性码和 LDPC 码评估误差指数并降低决策反馈方案的复杂性
- 批准号:
17K00020 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the role of monoamines in C. elegans decision making by reinforcement learning model
通过强化学习模型阐明单胺在秀丽隐杆线虫决策中的作用
- 批准号:
17J00605 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows