High-resolution Dynamic Contrast-enhanced MR Angiography

高分辨率动态对比增强磁共振血管造影

基本信息

  • 批准号:
    6547919
  • 负责人:
  • 金额:
    $ 34.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-04-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application is a competing renewal for a project titled "High-resolution time- resolved contrast-enhanced MR angiography". The original project introduced the concept that projection acquisitions in MR could be undersampled in high contrast environments. Significant progress produced imaging techniques that deliver four times faster resolution per unit time than Fourier encoding. Several fast scan methods were developed for abdominal, pulmonary, cardiac, peripheral, phase-contrast and T2- weighed imaging. The focus of this competing renewal is on undersampling techniques that take the next step in high resolution 3D MR angiography by dramatically increasing its capabilities for time-resolved imaging. The original project used undersampled projections for the in- plane dimensions and Fourier encoding in the slice dimension. This project acquires 3D projections in all orientations, making the undersampled energy more diffuse and less noticeable. While the speedup factor is comparable with the original project for static imaging, temporal processing of the dataset allows speedup factors that vary with spatial frequency from 40 at the lowest spatial frequencies to 4 at the highest ones. Other features, including isotropic resolution, broad coverage, and insensitivity to contrast arrival time, make this an ideal technique for abdominal contrast-enhanced MR angiography. The aims of the project include 1) shortening the acquisition time by increasing the efficiency of the sampling technique, 2) further developing and evaluating the temporal filtering algorithms for time-resolved imaging, 3) validating the technique against x-ray computed rotational angiography in a swine model of renal artery stenosis, and 4) validating the accuracy of the technique in patients with suspected abdominal vasculature disease. Successful completion of this work will produce an MR exam capable of evaluating the entire abdominal vasculature in a total exam time of less than five minutes.
描述(由申请人提供):本申请是一项名为“高分辨率时间分辨对比增强MR血管造影术”的项目的竞争性更新。 原始项目引入了MR中的投影采集在高对比度环境中可能欠采样的概念。成像技术取得了重大进展,每单位时间的分辨率比傅立叶编码快四倍。开发了几种快速扫描方法,用于腹部、肺部、心脏、外周、相位对比和T2加权成像。 这一竞争性更新的重点是欠采样技术,通过大幅提高其时间分辨成像的能力,在高分辨率3D MR血管造影中迈出下一步。最初的项目在平面维度上使用欠采样投影,在切片维度上使用傅立叶编码。该项目在所有方向上获取3D投影,使欠采样的能量更加分散,不那么明显。虽然加速因子与静态成像的原始项目相当,但数据集的时间处理允许加速因子随空间频率变化,从最低空间频率的40到最高空间频率的4。其他特征,包括各向同性分辨率、广泛覆盖范围和对对比剂到达时间不敏感,使其成为腹部对比增强MR血管造影的理想技术。该项目的目的包括:1)通过提高采样技术的效率缩短采集时间,2)进一步开发和评价时间分辨成像的时间滤波算法,3)在肾动脉狭窄的猪模型中验证该技术与X射线计算机旋转血管造影术的对比,以及4)验证该技术在疑似腹部血管疾病患者中的准确性。这项工作的成功完成将产生一个MR检查,能够在不到五分钟的总检查时间内评价整个腹部血管系统。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined time-resolved and high-spatial-resolution 3D MRA using an extended adaptive acquisition.
使用扩展自适应采集将时间分辨和高空间分辨率 3D MRA 相结合。
  • DOI:
    10.1002/jmri.10071
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mazaheri,Yousef;Carroll,TimothyJ;Du,Jiang;Block,WalterF;Fain,SeanB;Hany,ThomasF;Aagaard,BeverlyDL;Strother,CharlesM;Mistretta,CharlesA;Grist,ThomasM
  • 通讯作者:
    Grist,ThomasM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WALTER F BLOCK其他文献

WALTER F BLOCK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WALTER F BLOCK', 18)}}的其他基金

Interactive MR Image Guided Intervention (iMR-IGI) for Breast Applications
适用于乳腺应用的交互式 MR 图像引导干预 (iMR-IGI)
  • 批准号:
    8252498
  • 财政年份:
    2012
  • 资助金额:
    $ 34.77万
  • 项目类别:
Rapid MRI Method of Assessing Joint Degeneration
评估关节退化的快速 MRI 方法
  • 批准号:
    8102161
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
Rapid MRI Method of Assessing Joint Degeneration
评估关节退化的快速 MRI 方法
  • 批准号:
    8230165
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
Rapid MRI Method of Assessing Joint Degeneration
评估关节退化的快速 MRI 方法
  • 批准号:
    8291434
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
Rapid MRI Method of Assessing Joint Degeneration
评估关节退化的快速 MRI 方法
  • 批准号:
    7925244
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
Realtime 3D MRI Technologies for Therapy and Diagnosis
用于治疗和诊断的实时 3D MRI 技术
  • 批准号:
    7919110
  • 财政年份:
    2009
  • 资助金额:
    $ 34.77万
  • 项目类别:
Realtime 3D MRI Technologies for Therapy and Diagnosis
用于治疗和诊断的实时 3D MRI 技术
  • 批准号:
    7413720
  • 财政年份:
    2006
  • 资助金额:
    $ 34.77万
  • 项目类别:
Realtime 3D MRI Technologies for Therapy and Diagnosis
用于治疗和诊断的实时 3D MRI 技术
  • 批准号:
    7598945
  • 财政年份:
    2006
  • 资助金额:
    $ 34.77万
  • 项目类别:
Realtime 3D MRI Technologies for Therapy and Diagnosis
用于治疗和诊断的实时 3D MRI 技术
  • 批准号:
    7104582
  • 财政年份:
    2006
  • 资助金额:
    $ 34.77万
  • 项目类别:
Realtime 3D MRI Technologies for Therapy and Diagnosis
用于治疗和诊断的实时 3D MRI 技术
  • 批准号:
    7798583
  • 财政年份:
    2006
  • 资助金额:
    $ 34.77万
  • 项目类别:

相似海外基金

ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了