How the learning of unfamiliar faces is affected by their similarity to already known faces.
陌生面孔的学习如何受到其与已知面孔的相似性的影响。
基本信息
- 批准号:2107715
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Background While familiar and unfamiliar face processing share some characteristics, such as 'configural' processing [e.g. 1], there is also evidence that they rely on qualitatively different types of information [e.g. 2]. The robust observation of superior performance for familiar, compared to unfamiliar face recognition, suggests that familiarity is associated with a reliable processing benefit. Some authors propose that unfamiliar face matching should be conceptualised as image-matching, rather than involving any face-specific processes [e.g. 3]. Yet, virtually nothing is known about how unfamiliar faces become familiar. Current theoretical models [e.g. 4] suggest that faces are not encoded in isolation, but with respect to existing facial representations, often confined to an 'average' or 'norm' face. However, we are often struck by how similar a newly-encountered person is to someone whom we already know. I make the novel prediction that the encoding of unfamiliar faces is performed in relation to pre-existing face representations.DesignThis project aims to address major deficits in knowledge regarding how the learning of unfamiliar faces is affected by their degree of resemblance to already-known faces. I will manipulate unfamiliar faces' similarity to already known faces using various techniques, including morphing. Explicit learning will be measured by responses as to whether or not a face has been seen before. Critically, I will also measure implicit learning using adaptation designs, participant ratings for various characteristics (i.e. trustworthiness), eye-tracking (including pupil dilation), and event-related potentials (ERPs). Using these methods, I will be able to explore processing differences between familiar, similar-to-familiar, and unfamiliar face perception. As familiar face processing is likely to be confounded with conceptual information [e.g. 5] and ceiling effects, I will using training paradigms to manipulate familiarity.AnalysesCorrelational and regression analyses will be used to explore individual differences, and ANOVAs for group differences (i.e. stimuli that are familiar to some participants and stimuli that are unfamiliar to others) on explicit and implicit indexes of familiarity. Eye-tracking and ERP data will require pre-processing before responses are submitted to statistical testing. ConclusionsI will explore what happens as an unfamiliar face becomes familiar. This work is theoretically informative. The 'Interactive Activation and Competition' [e.g. 6] model posits that identity and identity-related information are processed separately. While unfamiliar faces rely on visual representations, theoretically, familiar faces could also be processed through conceptual information. Speculatively, if the encoding of unfamiliar faces is performed at least partly in relation to pre-existing face representations, this could have interesting implications for how predictive coding [e.g. 7] might work. This work may be able to test particularly strong existing theories that suggest unfamiliar faces are not faces [3], and begin to develop a satisfactory account of face learning.ImplicationsA better understanding of the perceptual, cognitive, and neural mechanisms involved in unfamiliar and familiar face learning will inform existing theories. In the longer term, this work may identify a collection of pre- and post-dictors of facial familiarity. This could have important implications in eye-witness settings
背景虽然熟悉和不熟悉的面孔处理有一些共同的特征,如“记忆”处理[例1],但也有证据表明它们依赖于不同类型的信息[例2]。与不熟悉的面孔识别相比,熟悉面孔识别的上级性能的稳健观察表明,熟悉与可靠的处理益处相关。一些作者提出,不熟悉的人脸匹配应该被概念化为图像匹配,而不是涉及任何特定于人脸的过程[例如3]。然而,几乎没有人知道陌生的面孔是如何变得熟悉的。目前的理论模型[例如4]表明,面孔不是孤立地编码的,而是相对于现有的面部表征,通常局限于“平均”或“标准”的面孔。然而,我们经常会惊讶于一个新遇到的人与我们已经认识的人是多么相似。我做了新的预测,不熟悉的面孔的编码进行有关预先存在的脸representations.DesignThis项目旨在解决知识的主要缺陷,关于如何学习的不熟悉的面孔是由他们的相似程度影响到已知的面孔。我将使用各种技术,包括变形,来操纵不熟悉的面孔与已知面孔的相似性。外显学习将通过一张脸之前是否见过的反应来衡量。重要的是,我还将使用适应设计、参与者对各种特征(即可信度)的评级、眼动跟踪(包括瞳孔扩张)和事件相关电位(ERP)来测量内隐学习。使用这些方法,我将能够探索熟悉,相似到熟悉和不熟悉的面孔感知之间的处理差异。由于熟悉面孔加工可能会与概念信息[例如5]和天花板效应混淆,我将使用训练范式来操纵熟悉度。分析相关性和回归分析将用于探索个体差异,以及对熟悉度的外显和内隐指标的组差异(即一些参与者熟悉的刺激和其他人不熟悉的刺激)的方差分析。眼动追踪和ERP数据在提交给统计测试之前需要进行预处理。结论我将探讨当一个陌生的面孔变得熟悉时会发生什么。这项工作是理论上的信息。“互动激活和竞争”[例如6]模式假定身份和与身份有关的信息是分开处理的。虽然陌生面孔依赖于视觉表征,但理论上,熟悉面孔也可以通过概念信息进行处理。据推测,如果不熟悉的面孔的编码至少部分地与预先存在的面孔表示有关,这可能对预测编码[例如7]可能如何工作产生有趣的影响。这项工作可能能够测试特别强的现有的理论,表明陌生的面孔不是面孔[3],并开始发展一个令人满意的帐户的脸learning.ImplicationsA更好地了解知觉,认知和神经机制参与陌生和熟悉的面孔学习将告知现有的理论。从长远来看,这项工作可能会识别出一系列面部熟悉度的前和后指示符。这可能对目击者有重要影响
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
- 批准号:
DE240101089 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant