Multivariate Count Autoregressive Models and their Assessment

多元计数自回归模型及其评估

基本信息

  • 批准号:
    2203911
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Count time series data are found in diverse applications arising in the field of Economic and Social Statistics. For example, the Office of National Statistics (ONS), publish time series data sets on business activity and demographics, labour market status, people and population, and so on. Much of these data are multivariate integer-valued time series that consist of counts and there is considerable lack of methodology for their proper analysis. Moreover, new data sources to integrate with or replace traditional surveys are being explored by ONS and the wider Government Statistical Service to improve understanding of the UK's economy, society and population, with time series analysis playing an important role. For analysing integer-valued time series, it is usually hard to impose a full parametric model for developing inference, as there are many available versions of the multivariate Poisson distribution in the literature. Even if one identifies a suitable multivariate model, the computations involved are usually cumbersome. In addition, a parametric model mightLast Updated August 2018miss the true correlation form that might exist in the data (consider, for example, number of car accidents or number of unemployed people by neighbourhing regions) and not be able to describe marginally the phenomenon of overdispersion that is usually found in count data. These points, and others, have been thoroughly discussed in the recent work by Fokianos et al (2018) who provides a framework for building observation-driven autoregressive linear and log-linear models for multivariate count time series. The point of view of these authors is based on generalized linear models' methodology as advocated by McCullagh and Nelder (1989). Fokianos et al (2018) have suggested a data generating process that does not necessarily impose marginally a Poisson assumption, yet the structure of the proposed models is kept simple. Estimation of unknown matrix parameters is implemented by Quasi Maximum Likelihood Estimation (QMLE, see Heyde (1997)) and, under mild conditions, it is shown that these estimators possess good properties. This work will be the basis for developing further methodology for multivariate count autoregressions motivated by real ONS data. The combination of likelihood inference and generalized linear models provide a systematic framework for the analysis of quantitative as well as qualitative time series data. Indeed, estimation, diagnostics, model assessment, and forecasting are implemented in a straightforward manner where computations can be easily developed.
在经济和社会统计领域出现的各种应用中都有计数时间序列数据。例如,国家统计局公布了关于商业活动和人口统计、劳动力市场状况、人和人口等的时间序列数据集,其中许多数据是由计数组成的多变量整数值时间序列,相当缺乏对其进行适当分析的方法。此外,国家统计局和更广泛的政府统计局正在探索与传统调查相结合或取代传统调查的新数据来源,以提高对英国经济、社会和人口的了解,时间序列分析发挥着重要作用。对于分析整数值时间序列,通常很难施加全参数模型来进行推断,因为文献中有许多可用的多变量泊松分布版本。即使人们确定了一个合适的多元模型,所涉及的计算通常是繁琐的。此外,参数模型可能会错过数据中可能存在的真实相关形式(例如,考虑相邻地区的车祸数量或失业人数),并且无法描述通常在计数数据中发现的过度分散现象。这些观点和其他观点在Fokianos等人(2018)最近的工作中进行了深入的讨论,他们为多变量计数时间序列构建观测驱动的自回归线性和对数线性模型提供了一个框架。这些作者的观点是基于McCullagh和Nelder(1989)所倡导的广义线性模型方法论。Fokianos et al(2018)提出了一种数据生成过程,该过程不一定会强加泊松假设,但所提出的模型的结构保持简单。未知矩阵参数的估计是通过拟最大似然估计(QMLE,参见Heyde(1997))来实现的,并且在温和的条件下,这些估计量具有良好的性质。这项工作将是进一步发展的基础上,多变量计数自回归的动机真实的ONS数据的方法。似然推理和广义线性模型的结合为定量和定性时间序列数据的分析提供了一个系统的框架。事实上,估计、诊断、模型评估和预测都是以一种简单的方式实现的,在这种方式下,计算可以很容易地进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
  • 批准号:
    AH/Z505389/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
  • 批准号:
    2312319
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HEAL Initiative: Research to Foster an Opioid Use Disorder Treatment System Patients Can Count On
HEAL 计划:促进患者可以信赖的阿片类药物使用障碍治疗系统的研究
  • 批准号:
    10772818
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Basic research focusing on correlation between tumor associated macrophage and peripheral monocyte count
肿瘤相关巨噬细胞与外周单核细胞计数相关性的基础研究
  • 批准号:
    23K08786
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fabulous Fibre: reducing micron count of finer wool quality UK sheep breeds to increase productivity, sustainability and resilience in the wool industry.
Fabulous Fibre:减少英国绵羊品种更细羊毛的微米数,以提高羊毛行业的生产力、可持续性和弹性。
  • 批准号:
    10085253
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
CAREER: Towards High-Channel-Count Invasive and High-Resolution Non-Invasive Electrical Neural Interfaces
职业:迈向高通道数侵入式和高分辨率非侵入式电神经接口
  • 批准号:
    2238833
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multi-Center Academic-Industrial Partnership for Personalized Al-Enabled High Count PET
个性化 Al 启用高计数 PET 的多中心学术-工业合作伙伴关系
  • 批准号:
    10682066
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Untethered high channel count electrophysiology for freely-moving animals
适用于自由活动动物的不受束缚的高通道数电生理学
  • 批准号:
    10761109
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
  • 批准号:
    2245492
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The verification of the effects of explicit grammar instruction in L2 acquisition of the count-mass distinction in English
显性语法教学在英语计数与质量区分二语习得中的效果验证
  • 批准号:
    22K13167
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了