Mathematical models of inhomogeneous nonlinear viscoelastic solids and associated applications.

非均匀非线性粘弹性固体的数学模型及相关应用。

基本信息

  • 批准号:
    2291505
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Constitutive models are essential in order to accurately model the way that materials deform under applied load. In terms of mechanics they typically relate stress (force per unit area) to strain or rate of strain. "Linear" materials are governed by simple linear relations: stress is proportional to strain (Hookean solids) or stress is proportional to rate of strain (Newtonian fluids). Linear viscoelastic materials behave somewhere between these two idealized media. These models typically apply to materials that undergo small deformations or small rates of strain. However they do not adequately describe a broad range of materials that include rubber and other elastomers of interest, foams and soft tissues predominantly because they can undergo large deformation but also because their material reponse is not linear. This behavior is even more difficult to capture in models when the medium in question is inhomogeneous, e.g. it may be filled with inclusions or nano-fillers. Reasons to include such fillers are usually associated with a desire to improve certain types of material response (stiffness, conductivity, etc.)This project will focus on developing the fundamental mathematical theory of nonlinear viscoelasticity associated with viscoelastic solids, and particularly those that are inhomogeneous. Since the 1960s a small number of theories have been proposed that model specific nonlinear viscoelastic materials under certain types of deformation. These vary in complexity, ranging from simple mathematical expressions to complex formulations. A first objective will therefore involve determining the links between these models: where they overlap and where they do not and how they may converge to each other in certain limits. These linkages are currently not understood and a clear understanding would be extremely beneficial to communities in applied mathematics and materials science. The student will also investigate how certain types of nonlinear viscoelastic behavior (e.g. strain dependent relaxation) can be accommodated by certain models but not others. In particular filled (inhomogeneous) elastomers often exhibit strong nonlinear behavior that is not present in homogeneous materials. In order to accommodate this strongly nonlinear behavior, new constitutive models will be developed. The starting point of the models will be quasi-linear viscoelasticity, which is viewed as a useful starting point in terms of a balance between being able to accurately represent certain types of behaviour and also being able to be implemented in computational models. Chiefly, the notion of strain-dependent relaxation will be investigated in these models and their ability to fit experimental data on a range of deformation modes of nonlinear materials. Of specific interest is existing experimental data associated with Syntactic foams, materials that are widely used in an array of applications ranging from aerospace, marine, sportswear and non-destructive evaluation. The constitutive models will be incorporated into open-source finite element software.
本构模型是必不可少的,以便准确地模拟材料在施加载荷下变形的方式。在力学方面,它们通常将应力(每单位面积的力)与应变或应变率联系起来。“线性”材料由简单的线性关系控制:应力与应变成比例(胡克固体)或应力与应变率成比例(牛顿流体)。线性粘弹性材料的行为介于这两种理想化介质之间。这些模型通常适用于经历小变形或小应变率的材料。然而,它们没有充分描述广泛的材料,包括橡胶和其他感兴趣的弹性体、泡沫和软组织,主要是因为它们可以经历大的变形,而且还因为它们的材料响应不是线性的。当所讨论的介质是不均匀的(例如,它可能充满了夹杂物或纳米填料)时,这种行为甚至更难以在模型中捕获。包括此类填料的原因通常与改善某些类型的材料响应(刚度、导电性等)的期望相关联。本计画将著重于发展与黏弹性固体相关的非线性黏弹性的基本数学理论,尤其是非均匀黏弹性固体。自20世纪60年代以来,已经提出了少数理论,对特定类型变形下的非线性粘弹性材料进行建模。它们的复杂性各不相同,从简单的数学表达式到复杂的公式。因此,第一个目标将涉及确定这些模式之间的联系:它们在哪些方面重叠,在哪些方面不重叠,以及它们如何在某些限度内相互趋同。这些联系目前还不清楚,清楚的了解将对应用数学和材料科学的社区极为有益。学生还将研究某些类型的非线性粘弹性行为(例如应变依赖松弛)如何被某些模型所适应,而不是其他模型。特别是填充(非均匀)弹性体往往表现出强烈的非线性行为,这是不存在于均匀的材料。为了适应这种强烈的非线性行为,将开发新的本构模型。模型的起点将是准线性粘弹性,这被视为一个有用的起点,在能够准确地表示某些类型的行为,也能够在计算模型中实现之间的平衡。Chillet,应变依赖松弛的概念将在这些模型和它们的能力,以适应非线性材料的变形模式的范围内的实验数据进行研究。特别令人感兴趣的是与Syntactic泡沫相关的现有实验数据,这些材料广泛用于航空航天,海洋,运动服装和非破坏性评估等一系列应用中。本构模型将被纳入开源有限元软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

(2+1)-dimensional growth models in inhomogeneous space
(2 1)维非均匀空间增长模型
  • 批准号:
    2771439
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Numerical calculation method for electrostatic fields in large-scale inhomogeneous anisotropic voxel models
大规模非均匀各向异性体素模型静电场数值计算方法
  • 批准号:
    25390153
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatially Inhomogeneous Cosmological Models
空间非均匀宇宙学模型
  • 批准号:
    361977-2009
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Master's
Spatially Inhomogeneous Cosmological Models
空间非均匀宇宙学模型
  • 批准号:
    361977-2008
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
inhomogeneous cosmological models as an alternative to dark energy
非均匀宇宙学模型作为暗能量的替代品
  • 批准号:
    368799-2008
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Cosmological scenario based on inhomogeneous models
基于非齐次模型的宇宙学场景
  • 批准号:
    19540279
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inhomogeneous tissue conductivity influence on the forward and inverse electroencephalogram problems in realistic head models
不均匀组织电导率对现实头部模型中正向和反向脑电图问题的影响
  • 批准号:
    DP0665216
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Phase transitions in inhomogeneous surface models for membranes and studies on the application
膜非均匀表面模型中的相变及其应用研究
  • 批准号:
    18560185
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications fo Realistic Inhomogeneous Cosmological Models
现实非齐次宇宙学模型的应用
  • 批准号:
    220090-1999
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Applications fo Realistic Inhomogeneous Cosmological Models
现实非齐次宇宙学模型的应用
  • 批准号:
    220090-1999
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了