Detector development for proton beam therapy quality assurance

用于质子束治疗质量保证的探测器开发

基本信息

  • 批准号:
    2320176
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Modern cancer treatment is largely a combination of 3 techniques: surgery, chemotherapy and radiotherapy. Radiotherapy uses beams of X-rays to irradiate the tumour from many different directions. The effect is to kill the cancer by depositing as much radiation dose in the tumour as possible, whilst minimising the dose to the surrounding area to spare healthy tissue. Proton therapy is a more precise form of radiotherapy that provides significant benefits over conventional X-ray radiotherapy. Protons lose energy - and therefore deposit their dose - in a much smaller region within the body, making the treatment much more precise: this leads to a more effective cancer treatment with a smaller chance of the cancer recurring. This is particularly important in the treatment of deep-lying tumours in the head, neck and central nervous system, particularly for children whose bodies are still developing and are particularly vulnerable to long-term radiation damage. The advantages of proton therapy, coupled to the reduced cost of the equipment, has led to a surge in interest in proton therapy treatment worldwide: there are now over 70 centres, with this number currently doubling every 3 years. In the UK, the NHS has funded 2 full-sized proton therapy centres - at University College Hospital in London and The Christie in Manchester - to operate alongside the eye treatment facility at the Clatterbridge Cancer Centre. These will provide treatment for a much wider range of cancers, allowing more patients to be treated closer to home. Treating these cancers requires machinery that is significantly more complex than a conventional radiotherapy system. Protons are accelerated to the right energy for treatment by a particle accelerator: once the beam leaves the accelerator, it then has to be transported to the treatment rooms many metres away by a series of steering and focussing magnets. When the proton beam reaches the treatment room, it has to be delivered through a gantry to the correct place. Proton therapy gantries are enormous - more than 3 storeys tall and weighing more than a hundred tonnes - and have to rotate around the patient to deliver the beam from any angle with millimetre precision. In order to ensure that treatment with such complex machinery is carried out safely, a range of quality assurance (QA) procedures are carried out each day before treatment starts. The majority of this time is spent verifying that the proton beam travels the correct depth and is carried out for several different energies: protons are counted at different depths in a plastic block that mimics human tissue. These QA measurements of the proton range take significant time to set up and adjust for different energies: the full procedure can take over an hour. This studentship is focussed on developing a detector that can make faster and more accurate measurements of the proton range than existing systems. The detector is built from layers of plastic scintillator that has the same density as water and resembles a sliced loaf of broad. Protons passing through this scintillator stack deposit energy in each layer which is converted into light: by recording the light from each layer, the amount of energy the protons deposit along their path can be measured. Such a system provides a direct measurement of the range of protons in tissue, since the absorption of the plastic is virtually identical to human tissue. As such, a measurement of the proton range for multiple energies would allow the complete morning energy QA procedure to be carried out in a few minutes, with an accuracy of less than a millimetre. At the two new NHS centres, this would translate into being able to treat an extra 12-18 patients every single day. The particular focus of the studentship is the scintillator readout and online reconstruction of the proton range with an FPGA, as well as the control and readout software.
现代癌症治疗主要是3种技术的组合:手术,化疗和放疗。放射疗法使用X射线束从许多不同的方向照射肿瘤。其效果是通过在肿瘤中沉积尽可能多的辐射剂量来杀死癌症,同时最大限度地减少周围区域的剂量以保护健康组织。质子治疗是一种更精确的放射治疗形式,与传统的X射线放射治疗相比具有显着的优势。质子失去能量--因此存款其剂量--在体内一个小得多的区域,使治疗更加精确:这导致更有效的癌症治疗,癌症复发的机会更小。这对于治疗头部、颈部和中枢神经系统的深部肿瘤特别重要,特别是对于身体仍在发育中、特别容易受到长期辐射损害的儿童。质子治疗的优势,加上设备成本的降低,导致全世界对质子治疗的兴趣激增:现在有70多个中心,这个数字目前每3年翻一番。在英国,NHS资助了两个全尺寸的质子治疗中心--位于伦敦的大学学院医院和曼彻斯特的克里斯蒂医院--与克拉特布里奇癌症中心的眼科治疗设施一起运作。这些将为更广泛的癌症提供治疗,使更多的患者能够在离家更近的地方接受治疗。治疗这些癌症需要比传统放射治疗系统复杂得多的机器。质子被粒子加速器加速到合适的能量进行治疗:一旦光束离开加速器,它就必须通过一系列转向和聚焦磁铁被运送到数米之外的治疗室。当质子束到达治疗室时,它必须通过机架输送到正确的位置。质子治疗台架是巨大的-超过3层楼高,重量超过100吨-并且必须围绕患者旋转,以毫米精度从任何角度提供光束。为了确保使用这种复杂的机械进行安全处理,每天在处理开始前都要执行一系列质量保证(QA)程序。这段时间的大部分时间都花在验证质子束是否行进正确的深度上,并以几种不同的能量进行:在模拟人体组织的塑料块中的不同深度对质子进行计数。这些质子范围的QA测量需要大量时间来设置和调整不同的能量:整个过程可能需要一个多小时。这个学生奖学金的重点是开发一种探测器,可以比现有系统更快,更准确地测量质子范围。探测器由塑料闪烁体层制成,其密度与水相同,类似于切片面包。穿过该闪烁体堆叠的质子在每层中存款能量,该能量被转换成光:通过记录来自每层的光,可以测量质子存款沿着它们的路径的能量的量。这种系统提供了对组织中质子范围的直接测量,因为塑料的吸收实际上与人体组织相同。因此,测量多个能量的质子范围将允许在几分钟内进行完整的早晨能量QA程序,精度小于1毫米。在两个新的NHS中心,这将意味着每天能够治疗额外的12-18名患者。学生奖学金的重点是闪烁体读出和在线重建的质子范围与FPGA,以及控制和读出软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
  • 批准号:
    82371721
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
增强子在小鼠早期胚胎细胞命运决定中的功能和调控机制研究
  • 批准号:
    82371668
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
  • 批准号:
    82371276
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
"胚胎/生殖细胞发育特性激活”促进“神经胶质瘤恶变”的机制及其临床价值研究
  • 批准号:
    82372327
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
TMEM30A介导的磷脂酰丝氨酸外翻促进毛细胞-SGN突触发育成熟的机制研究
  • 批准号:
    82371172
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
  • 批准号:
    82372014
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
细胞核分布基因NudCL2在细胞迁移及小鼠胚胎发育过程中的作用及机制研究
  • 批准号:
    31701214
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultra-Fast Dose Rate (FLASH) Radiation Detector and Safety System
超快剂量率 (FLASH) 辐射探测器和安全系统
  • 批准号:
    10714550
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of C/H ratio online detector for proton radius measurement by low-energy electraon scattering
低能电子散射质子半径测量C/H比在线检测器的研制
  • 批准号:
    20H01925
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A rapid response detector system for intensity modulated proton therapy dosimetry
用于调强质子治疗剂量测定的快速响应探测器系统
  • 批准号:
    8781013
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
A rapid response detector system for intensity modulated proton therapy dosimetry
用于调强质子治疗剂量测定的快速响应探测器系统
  • 批准号:
    8926889
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Development of silicon micro strip detector for proton computed tomography
质子计算机断层扫描用硅微带探测器的研制
  • 批准号:
    22611008
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Radiation Hard X-Ray Detector for Image-Guided Proton Beam Cancer Therapy
用于图像引导质子束癌症治疗的辐射硬 X 射线探测器
  • 批准号:
    7670035
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Development of a gas-scintillator detector and measurements of medical nuclear data at HIMAC
HIMAC 开发气体闪烁体探测器并测量医学核数据
  • 批准号:
    17360460
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of the air shower core detector for the primary cosmic-ray observation at the knee.
开发用于膝部初级宇宙射线观测的空气喷淋核心探测器。
  • 批准号:
    15540260
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Low Energy Proton Detector Using a Ruby Scintillator
使用红宝石闪烁体开发低能质子探测器
  • 批准号:
    11680513
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEVELOPMENT OF HIGH ENRGY RESOLUTION SPECTROMETER FOR NEUTRONS WITH PROPORTIONAL COUNTER Si DETECTOR TELESCOPE TYPE
正比计数器硅探测器望远镜型高能分辨中子谱仪的研制
  • 批准号:
    08458132
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了