Deep Spatiotemporal Models for Video Representation Learning
用于视频表示学习的深度时空模型
基本信息
- 批准号:2431426
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The area of video representation learning is of interest to the Artificial Intelligence community, as it aims to foster the field of computer vision by using the dynamics of a scene to make critical decisions. Compared to using still images, video data gives more context to the information present, and this improves the quality of decisions made by systems built on the framework of video representation learning. The research aims to add to the field of video representation learning by developing a graph-based machine learning model that would outperform current state-of-the-art models. Although video data do not have a naturally occurring graph structure (unlike social networks), using a graph-based architecture significantly reduces the number of parameters needed in the model [1]. And this makes the proposed model suitable for memory-constrained devices like mobile phones.[1] Shirian, A., Tripathi, S., & Guha, T. (2021). Dynamic Emotion Modeling with Learnable Graphs and Graph Inception Network. IEEE Transactions on Multimedia.The aims and objectives of the research *The objective of the research is to:1. develop spatiotemporal graphs for modeling videos;2. learn the adjacency such that it is data dependent; and3. extend to heterogeneous graphs where data modalities can be multiple (e.g.,video with audio).The novelty of the research methodology (if any) *The research would contribute to the existing body of knowledge in video representation learning. The research aims to design a new graph-based machine learning architecture, new loss functions to better penalize our model and optimization techniques to speed up model training.The potential impact, applications, and benefits *The research would:1. improve the current autonomous navigation systems;2. be applied for object detection and action prediction in surveillance systems;3. be used to improve computer vision in robots;4. be suitable for memory-constrained devices like mobile phones;5. be able to narrate events happening in a scene. And this is useful for visuallyimpaired individuals etc.How the research relates to the remit *The research cuts across the field of Artificial Intelligence and robotics, mathematical science, and Information and communication technologies (ICT). And these are key areas of interest for the EPSRC, as this research wouldimprove visual perception in robotics, broaden the knowledge on the applicability of graph theory beyond social networks and the future of self driving cars would not be far from reach. Research Category; ICT [Information and Communication Technologies], Mathematical SciencesExternal Partner - Intel Labs, San Diego.
视频表示学习领域引起了人工智能界的兴趣,因为它旨在通过利用场景的动态做出关键决策来促进计算机视觉领域的发展。与使用静态图像相比,视频数据为所呈现的信息提供了更多上下文,这提高了基于视频表示学习框架的系统做出的决策质量。该研究旨在通过开发基于图的机器学习模型来拓展视频表示学习领域,该模型的性能将优于当前最先进的模型。尽管视频数据不具有自然发生的图结构(与社交网络不同),但使用基于图的架构可以显着减少模型中所需的参数数量[1]。这使得所提出的模型适用于手机等内存受限的设备。[1] Shirian, A.、Tripathi, S. 和 Guha, T. (2021)。使用可学习图和图初始网络进行动态情感建模。 IEEE Transactions on Multimedia。研究的目的和目标*研究的目标是:1。开发用于视频建模的时空图;2。学习邻接关系,使其依赖于数据;和3。扩展到数据模态可以是多种的异构图(例如,视频和音频)。研究方法的新颖性(如果有)*该研究将有助于视频表示学习的现有知识体系。该研究旨在设计一种新的基于图的机器学习架构、新的损失函数以更好地惩罚我们的模型和优化技术以加速模型训练。潜在的影响、应用和好处 *研究将:1。改进现有的自主导航系统;2.应用于监控系统中的目标检测和动作预测;3.用于改善机器人的计算机视觉;4.适用于手机等内存受限的设备;5.能够叙述场景中发生的事件。这对于视障人士等很有用。该研究与职权范围的关系如何*该研究跨越人工智能和机器人、数学科学以及信息和通信技术 (ICT) 领域。这些都是 EPSRC 感兴趣的关键领域,因为这项研究将改善机器人技术的视觉感知,拓宽图论在社交网络之外的适用性知识,自动驾驶汽车的未来也将指日可待。研究类别; ICT [信息和通信技术],数学科学外部合作伙伴 - 圣地亚哥英特尔实验室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于分子动力学的沥青/集料界面行为Spatiotemporal模型
- 批准号:51378073
- 批准年份:2013
- 资助金额:72.0 万元
- 项目类别:面上项目
相似海外基金
How will change the species composition of forest associations due to climate change? : Predicting spatiotemporal changes using a Species Distribution Models
气候变化将如何改变森林群落的物种组成?
- 批准号:
23K13986 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
- 批准号:
2319279 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Toward high spatiotemporal resolution models of single molecules for in vivo applications
用于体内应用的单分子高时空分辨率模型
- 批准号:
10552322 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: Spatiotemporal variability of solar radiation partitioning in the sea ice system: Improving climate models using observations from the MOSAiC field campaign
合作研究:海冰系统中太阳辐射分区的时空变化:利用 MOSAiC 实地活动的观测结果改进气候模型
- 批准号:
2138785 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spatiotemporal variability of solar radiation partitioning in the sea ice system: Improving climate models using observations from the MOSAiC field campaign
合作研究:海冰系统中太阳辐射分区的时空变化:利用 MOSAiC 实地活动的观测结果改进气候模型
- 批准号:
2138788 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Multivariate spatiotemporal models to quantify disparities in COVID-19 health outcomes
用于量化 COVID-19 健康结果差异的多元时空模型
- 批准号:
10706489 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10705163 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Predictive Spatiotemporal Models of Auditory Perception
听觉感知的预测时空模型
- 批准号:
548180-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Machine learning models for spatiotemporal modeling of epidemic spreading
用于流行病传播时空建模的机器学习模型
- 批准号:
573428-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Spatiotemporal variability of solar radiation partitioning in the sea ice system: Improving climate models using observations from the MOSAiC field campaign
合作研究:海冰系统中太阳辐射分区的时空变化:利用 MOSAiC 实地活动的观测结果改进气候模型
- 批准号:
2325430 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




