Algorithms for Matrix Estimation
矩阵估计算法
基本信息
- 批准号:2436329
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are many real-world applications in which predictions have to be made based on observed or measured data. In most cases, the measured data can be represented as a large m x n matrix Z with several missing entries and the problem becomes "completing" this matrix based on the observed entries. One such case of this matrix estimation problem is recommender systems, where items are recommended to users based on partial knowledge of their past preferences.Generally, this can be done by applying a low-rank factor model. A low-rank prediction of the original matrix can be obtained as the product of two factor matrices.Within the research area of digital signal processing, the goal of matrix estimation is to investigate the most effective ways of achieving this low-rank representation of the matrix factors and recover the missing entries with the lowest possible error.Having studied matrix estimation during my Part IIB Project in Cambridge, I have understood the principles behind matrix estimation but become aware of the mathematical depth of the technique and the broad range of possibilities associated with it. Matrix estimation has the potential to be useful in many real-world applications, as all it needs is associations between two entities, from biomedical research (gene-disease) to movie recommender systems (user-film associations).In these real-world applications, there is often previous knowledge of the data (side information) available which can be used to significantly improve accuracy as well as reducing complexity. During my PhD, I would like to develop matrix completion algorithms tailored to use different kinds of side information about the factors.
在许多实际应用中,预测必须基于观察到的或测量到的数据。在大多数情况下,测量的数据可以表示为一个大的mXn矩阵Z,其中有几个缺失的条目,问题变成了基于观察到的条目来“完成”这个矩阵。这种矩阵估计问题的一个例子是推荐系统,在推荐系统中,项目是基于用户过去偏好的部分知识推荐给用户的。通常,这可以通过应用低秩因子模型来完成。原始矩阵的低秩预测可以作为两个因子矩阵的乘积获得。在数字信号处理的研究领域中,矩阵估计的目标是研究实现矩阵因子的低秩表示的最有效方法,并以尽可能低的误差恢复丢失的项。在剑桥的Part IIB项目期间研究了矩阵估计,我已经理解了矩阵估计背后的原理,但也意识到了该技术的数学深度和与之相关的广泛可能性。矩阵估计在许多现实世界的应用中都有潜力,因为它所需要的只是两个实体之间的关联,从生物医学研究(基因疾病)到电影推荐系统(用户-电影关联)。在这些现实世界的应用中,通常存在可用的数据的先前知识(辅助信息),其可用于显著地提高准确性以及降低复杂性。在我的博士学位期间,我想开发矩阵补全算法,以使用关于因子的不同类型的辅助信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical mechanical approach to matrix and tensor estimation
矩阵和张量估计的统计机械方法
- 批准号:
22KJ1074 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Optimal Loss-Based Covariance Matrix Estimation in High Dimensions with Applications to Unsupervised Statistical Learning
高维基于最优损失的协方差矩阵估计及其在无监督统计学习中的应用
- 批准号:
557275-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Optimal Loss-Based Covariance Matrix Estimation in High Dimensions with Applications to Unsupervised Statistical Learning
高维基于最优损失的协方差矩阵估计及其在无监督统计学习中的应用
- 批准号:
557275-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Spatial weight matrix estimation with LASSO
使用 LASSO 估计空间权重矩阵
- 批准号:
21K20145 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
CRII: CIF: Generalizations for Matrix and Tensor Estimation
CRII:CIF:矩阵和张量估计的概括
- 批准号:
1948256 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
RII Track-4: Robust Matrix Completion State Estimation in Low-Observability Distribution Systems under False Data Injection Attacks
RII Track-4:虚假数据注入攻击下低可观测性分布系统中的鲁棒矩阵完成状态估计
- 批准号:
1929147 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant