High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
基本信息
- 批准号:RGPIN-2016-05174
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the major advances in information technology in the past few decades, datasets of massive size and complex structures are becoming increasingly common in many fields such as economics, finance, actuarial science, genomics and neuroscience. Yet that size and complexity of these datasets introduces unique theoretical and computational challenges in statistical learning research. Motivated by real-world problems, this research proposal focuses on the high-dimensional feature selection problems where a response variable of interest is modeled as a function of a small subset of a large number of features. The goal of this proposal is to pursue some new directions in this promising area. Specifically, one of the emphases of my research program is on developing model diagnostic tools to evaluate the reliability of feature selection and prediction results from the high-dimensional statistical learning models. My research program also concerns the modeling of partial correlation, zero-inflation and overdispersion in high-dimensional data, which all make the feature selection problem even more challenging. Additionally, this proposal also involves research topics in the frontiers of actuarial statistics. A part of this proposal focuses on the high-dimensional feature selection techniques for non-life insurance premium prediction, which jointly model the structure of the expected claim loss and associated risk dispersion of an insurance policy. My proposed research program will address unresolved statistical issues in high-dimensional learning models, and offer solutions to practical problems of interest to a broader statistical audience. The proposed methods could then immediately be used to solve scientific problems in areas such as bioinformatics, economics, engineering, and neuroscience. My work on the insurance premium prediction could also have impacts on the developments of modern actuarial methods and contribute significantly to many business applications.
随着过去几十年信息技术的重大进步,大规模和复杂结构的数据集在经济学、金融学、精算学、基因组学和神经科学等许多领域变得越来越普遍。然而,这些数据集的规模和复杂性给统计学习研究带来了独特的理论和计算挑战。受现实问题的启发,本研究建议重点关注高维特征选择问题,其中感兴趣的响应变量被建模为大量特征的一个小子集的函数。本提案的目的是在这一有希望的领域寻求一些新的方向。具体而言,我的研究计划的重点之一是开发模型诊断工具,以评估高维统计学习模型的特征选择和预测结果的可靠性。我的研究计划还涉及高维数据中的部分相关性、零膨胀和过度分散的建模,这些都使特征选择问题更具挑战性。此外,该建议还涉及精算统计前沿的研究课题。该提案的一部分重点关注用于非寿险保费预测的高维特征选择技术,该技术联合建模了保单的预期索赔损失和相关风险分散的结构。我提出的研究计划将解决高维学习模型中尚未解决的统计问题,并为更广泛的统计受众感兴趣的实际问题提供解决方案。然后,所提出的方法可以立即用于解决生物信息学,经济学,工程学和神经科学等领域的科学问题。我在保险费预测方面的工作也可能对现代精算方法的发展产生影响,并对许多商业应用做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang, Yi其他文献
Nomogram Based on Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio to Predict Recurrence in Patients with Hepatocellular Carcinoma after Radiofrequency Ablation
- DOI:
10.1007/s00270-021-02872-8 - 发表时间:
2021-05-25 - 期刊:
- 影响因子:2.9
- 作者:
Chen, Yi;Yang, Yi;Zhou, Xiang - 通讯作者:
Zhou, Xiang
Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant.
- DOI:
10.1016/j.imbio.2013.05.001 - 发表时间:
2013-12 - 期刊:
- 影响因子:2.8
- 作者:
Engel, Abbi L.;Sun, Guan-Cheng;Gad, Ekram;Rastetter, Lauren R.;Strobe, Katie;Yang, Yi;Dang, Yushe;Disis, Mary L.;Lu, Hailing - 通讯作者:
Lu, Hailing
Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR
- DOI:
10.1007/s00253-018-8986-5 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:5
- 作者:
You, Min;Yang, Yi;Xia, Ningshao - 通讯作者:
Xia, Ningshao
Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2
细胞高效摄取源自 2 型猪圆环病毒衣壳蛋白的细胞穿透肽 (CPP)
- DOI:
10.1074/jbc.ra118.004823 - 发表时间:
2018-09-28 - 期刊:
- 影响因子:4.8
- 作者:
Yu, Wanting;Zhan, Yang;Yang, Yi - 通讯作者:
Yang, Yi
IONIC LIQUID-BASED MICROWAVE-ASSISTED EXTRACTION OF ORGANOCHLORINE PESTICIDES FROM SOIL
离子液体微波辅助从土壤中提取有机氯农药
- DOI:
10.1080/10826076.2012.673207 - 发表时间:
2012-06 - 期刊:
- 影响因子:0
- 作者:
Wang, Ruoyu;Su, Ping;Zhong, Qiu;Zhang, Yao;Yang, Yi - 通讯作者:
Yang, Yi
Yang, Yi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang, Yi', 18)}}的其他基金
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
- 批准号:
10889303 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
- 批准号:
RGPIN-2022-03708 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
- 批准号:
DGECR-2022-00445 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Topics in Statistical Modelling and Inference with High-Dimensional, Complex Data
高维、复杂数据的统计建模和推理主题
- 批准号:
RGPIN-2017-05720 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113779 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113778 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
- 批准号:
RGPIN-2016-06262 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual