Developing Novel Machine Learning Techniques with Human-in-the-Loop Approach to Enable Better Decision Making on Operations Maintenance
采用人机交互方法开发新颖的机器学习技术,以在运营维护方面做出更好的决策
基本信息
- 批准号:2440644
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project will support the development of new human-centric approaches to Predictive Maintenance in the steel industry. By enabling synergy between operators (and their knowledge) and data models for assets maintenance, it will be possible to optimize the maintenance schedule, resulting in cost savings and increased safety of operations. Workers will also benefit because it will enable them to plan maintenance at the right time avoiding the need to deal with unforeseen circumstances, hence improving the wellbeing of workers who areexposed to a very challenging and complex environment.The board aims and objectives are:1) Work with onsite engineers who have the domain knowledge to understand the origin of data and how it relates to the physical realities of the process.2) Use novel data analysis techniques with artificial intelligence and machine learning to create a digital twin of the asset.3) Create models which are scalable across assets within the Azure environment.4) Create event-based outputs from models into existing dashboards for use by maintenance teams.5) Create a guidance on the standard requirements for input data formats and code language(s) (Python, C++, C# etc) to be used.In this research project we will address the above challenges and study novel ML tools and workflows with 'humans (supervisors) in the loop' that integrate data driven approaches with knowledge modelling to develop robust, transferrable, adaptable and usable ML models for in-line and real time predictive maintenance. The research will follow three important strands:An inspection data analysis environment that will present a realistic display of inspection data and will be used as a human (supervisors)-in-the-loop approach to learn about the domain knowledge in terms of predicting failures. Supervisors' actions to predict failure will help with labelling the unlabelled data which will help develop ML models. Consequently, supervisors' feedback will help generate a transferrable, adaptable and usable ML model. Investigate and apply Transfer Learning approaches to improve scalability and adaptability of ML models across a manufacturing site (reducing time and complexity during the training process).Investigate, develop and study hybrid human-centric PdM approaches that integrate semantically enriched data with data-driven models to learn appropriate corrective actions associated to failures and drive optimal decision-making strategies. The research project will use datasets from the centralised asset management platform (AMDC) at Tata Steel, focusing on specific use cases. The findings of the research will create direct benefit for the industrial sponsor as it will enable Tata Steel. to reduce the overall cost of maintenance and reduce occurrences of failures, leading to increased sustainability and improved worker safety and wellbeing in the steel works. The research methodology will employ human-centric approaches and user involvement to drive the development of novel ML workflows in PdM to enhance human decision making in complex industrial environment. We expect that some of the research findings and methodologieswill be of general application to PdM and hence will bring societal and economic benefits through improved, safer and more sustainable industrial processes.The student will work closely with industrial users (onsite engineers and managers) who have the domain knowledge to understand the origin of data and how it relates to the physical processes. Stakeholders (shop floor workers, managers and maintenance operators) will be involved in the research design and development of solutions through formal workshops and day to day interactions at the plant. The users will be involved in evaluation of solutions in an iterative way to gain continuous feedback that will lead to further improvements.
该项目将支持钢铁行业以人为本的预测性维护新方法的开发。通过实现运营商(及其知识)与资产维护数据模型之间的协同作用,可以优化维护计划,从而节省成本并提高运营安全性。工人也将受益,因为它将使他们能够在正确的时间计划维护,避免需要处理不可预见的情况,从而改善工人的福祉,他们暴露在一个非常具有挑战性和复杂的环境中。委员会的宗旨和目标是:1)与拥有领域知识的现场工程师合作,了解数据的来源及其与流程物理现实的关系。2)使用具有人工智能和机器学习的新型数据分析技术,创建资产的数字孪生模型。3)创建可跨Azure环境中的资产扩展的模型。4)将基于事件的输出从模型创建到现有仪表板中,以供维护团队使用。5)创建有关输入数据格式和代码语言的标准要求的指南(Python,C++,在这个研究项目中,我们将解决上述挑战,并研究新的机器学习工具和工作流程,(监督者)在环“,将数据驱动方法与知识建模相结合,为在线和真实的时间预测维护开发健壮、可转移、可适应和可用的ML模型。该研究将遵循三个重要方面:检测数据分析环境,将呈现检测数据的真实显示,并将用作人类(监督者)在环方法,以了解预测故障方面的领域知识。监督者预测失败的行为将有助于标记未标记的数据,这将有助于开发ML模型。因此,主管的反馈将有助于生成可转移、可适应和可用的ML模型。研究和应用迁移学习方法,以提高ML模型在整个制造现场的可扩展性和适应性(减少培训过程中的时间和复杂性)研究、开发和研究以人为中心的混合PdM方法,将语义丰富的数据与数据驱动的模型集成,以学习与故障相关的适当纠正措施,并推动最佳决策策略。该研究项目将使用塔塔钢铁集中资产管理平台(AMDC)的数据集,重点关注特定用例。研究结果将为工业赞助商创造直接利益,因为它将使塔塔钢铁公司。降低维护的总体成本并减少故障的发生,从而提高钢铁厂的可持续性并改善工人的安全和福祉。该研究方法将采用以人为本的方法和用户参与来推动PdM中新型ML工作流的开发,以增强人类在复杂工业环境中的决策能力。我们希望其中的一些研究成果和方法能够普遍应用于PdM,从而通过改进、更安全和更可持续的工业流程带来社会和经济效益。学生将与具有领域知识的工业用户(现场工程师和管理人员)密切合作,了解数据的来源以及它与物理过程的关系。利益相关者(车间工人、经理和维护操作员)将通过正式的研讨会和工厂的日常互动参与解决方案的研究设计和开发。用户将以反复的方式参与对解决方案的评价,以获得持续的反馈,从而进一步改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
- 批准号:
2326879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Pictura Bio: Machine learning enhanced universal point of care diagnosis platform for infectious diseases leveraging novel fluorescent labelling of enveloped pathogens - developing the Alpha Prototype.
Pictura Bio:机器学习增强了传染病的通用护理点诊断平台,利用包膜病原体的新型荧光标记 - 开发 Alpha 原型。
- 批准号:
10077183 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Developing novel machine learning techniques and proton beam monitoring to measure neutrino oscillations with the T2K experiment
开发新颖的机器学习技术和质子束监测,通过 T2K 实验测量中微子振荡
- 批准号:
578258-2023 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Developing Novel Machine Learning Techniques to Improve Comparative Judgements for e-Learning and e-Assessment
开发新颖的机器学习技术以改进电子学习和电子评估的比较判断
- 批准号:
2440744 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving cattle health by developing novel data fusion and machine learning approaches to Internet of things livestock data
通过开发物联网牲畜数据的新型数据融合和机器学习方法来改善牛的健康
- 批准号:
2182032 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Developing a novel machine learning approach to construct effective personalised learning pathways in data science tuition
开发一种新颖的机器学习方法,在数据科学教学中构建有效的个性化学习路径
- 批准号:
104486 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Feasibility Studies
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual