Developing Novel Machine Learning Techniques to Improve Comparative Judgements for e-Learning and e-Assessment

开发新颖的机器学习技术以改进电子学习和电子评估的比较判断

基本信息

  • 批准号:
    2440744
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

There is a wide selection of aims we could examine under this project:1) To understand how machine learning (ML) can function as a support for an educator and not a strait jacket. Key questions to ask:Are different measures relevant to different teachers? How do they interpret the data and use it to guide their teaching?2) To understand how we can gather large volumes of quantifiable data about qualitative assessments allowing machine learning (ML) approaches to work on the data.3) What design methods are suitable to use in order to engage with students and teachers in this complex design process. Key questions are:How do we express possibilities for different insights that we can gather from the data?How do we capture ideas about more nebulous elements of ML like privacy and ensure ongoing consent for data collection?4) To identify appropriate ML methods and develop a complete ML framework for analysing qualitative assessments.5) To actively query a small subset of all submissions to learn what attributes constitute excellent quality, taking an interactive approach with the educators to improve our proposedframework's performance.6) To validate and make the developed tool useable in the real-world.We aim to redress the imbalance caused by automated marking tools promoting specific approaches to assessment. We will develop a decision support tool for educators assessing qualitative work that will make such assessments more attractive by increasing the educators understanding of the student cohorts' work and, potentially, reducing the amount of time they need to spend marking it. A comparative judgement framework [1] will be developed to allow educators to understand how changes in practice between different cohorts' impact on assessments. If the comparative judgement framework can show reliable performance at the cohort level, we will explore how it can be applied to individual qualitative assignments to support educators' assessments of them. Year One - Identifying assessments: Qualitative assessments are subjective and learning about good and bad practices autonomously challenging. To address this, the student will survey teaching practitioners to identify the most important types of qualitative assessments, and key learning outcomes in those assessments. We will also work with educators and students to understand their attitudes to automated assessment of their work, their concerns about the tool and the ways in which they can be reassured of the validity of such assessments following Value Sensitive Design approaches [2]. This will narrow down thescope of the tool and be used to create a proof-of-concept.Year One and Two - Learning knowns and identifying gaps in knowledge: CDSM has awealth of data on submissions and their respective grades. At this stage, we aim to learn from this data to identify key features within the scope identified in the previous step. Here, we will first focus on finding meaningful structures in the dataset from a semantic perspective [3], potentially utilising a supervised approach (using existing grades) and some form of contextual embeddings [4]. These will help derive insight into what makes a submission address specificlearning outcomes. Given we use a probabilistic model, we can deduce which submissions our model has low confidence (or high uncertainty in predictions) about: this shows the gaps in our knowledge, which only a human practitioner can help fill.Year Three - Interactively improving models: develop an interactive visual system to display insights into cohort data and individual submissions and allow educations practitioners to respond to two key questions about a submission:Were our model predictions correct? How would they rate a given assignment?These submissions will be carefully picked via an active learning strategy where we select submission that we are unsure about or that are likely to improve our model to provide better predictions.
在这个项目下,我们可以研究的目标有很多:1)了解机器学习(ML)如何作为教育工作者的支持而不是紧身衣。要问的关键问题:不同的措施是否与不同的教师有关?他们如何解释这些数据并用它们来指导他们的教学?2)了解我们如何收集有关定性评估的大量可量化数据,从而允许机器学习(ML)方法处理数据。3)适合使用哪些设计方法来让学生和教师参与这个复杂的设计过程。关键问题是:我们如何表达从数据中收集到的不同见解的可能性?我们如何捕捉关于ML更模糊的元素(如隐私)的想法,并确保对数据收集的持续同意?4)识别适当的机器学习方法并开发一个完整的机器学习框架来分析定性评估。5)主动查询所有提交的一小部分,以了解哪些属性构成优秀的质量,采取与教育工作者互动的方法来提高我们提出的框架的性能。6)验证并使开发的工具在真实的中可用-我们的目标是纠正自动评分工具所造成的不平衡,促进具体的评估方法。我们将为评估定性作业的教育工作者开发一个决策支持工具,通过增加教育工作者对学生群体作业的理解,并可能减少他们需要花费的时间,使这种评估更具吸引力。将开发一个比较判断框架[1],让教育工作者了解不同群体之间的实践变化对评估的影响。如果比较判断框架能够在队列层面显示可靠的表现,我们将探索如何将其应用于个人定性作业,以支持教育工作者对它们的评估。第一年-确定评估:定性评估是主观的,自主学习好的和坏的做法具有挑战性。为了解决这个问题,学生将调查教学实践者,以确定最重要的定性评估类型,以及这些评估中的关键学习成果。我们还将与教育工作者和学生合作,了解他们对工作自动化评估的态度,他们对工具的担忧,以及他们可以在价值敏感设计方法之后确保此类评估有效性的方式[2]。这将缩小工具的范围,并用于创建概念验证。第一年和第二年-学习知识并确定知识差距:CDSM拥有大量关于提交材料及其相应等级的数据。在这个阶段,我们的目标是从这些数据中学习,以确定上一步确定的范围内的关键特征。在这里,我们将首先关注从语义的角度[3]在数据集中找到有意义的结构,可能使用监督方法(使用现有的等级)和某种形式的上下文嵌入[4]。这些将有助于深入了解是什么使提交解决具体的学习成果。假设我们使用概率模型,我们可以推断出我们的模型具有低置信度的提交(或预测的高度不确定性):这显示了我们知识的空白,只有人类实践者可以帮助填补。第三年-交互式改进模型:开发一个交互式视觉系统,以显示对队列数据和个人提交的见解,并允许教育从业者回答关于问题:我们的预测是否正确?他们会如何评价一个给定的任务?这些提交将通过主动学习策略进行仔细挑选,我们选择我们不确定或可能改进我们的模型以提供更好预测的提交。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
  • 批准号:
    2326879
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Pictura Bio: Machine learning enhanced universal point of care diagnosis platform for infectious diseases leveraging novel fluorescent labelling of enveloped pathogens - developing the Alpha Prototype.
Pictura Bio:机器学习增强了传染病的通用护理点诊断平台,利用包膜病原体的新型荧光标记 - 开发 Alpha 原型。
  • 批准号:
    10077183
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Developing novel machine learning techniques and proton beam monitoring to measure neutrino oscillations with the T2K experiment
开发新颖的机器学习技术和质子束监测,通过 T2K 实验测量中微子振荡
  • 批准号:
    578258-2023
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Developing Novel Machine Learning Techniques with Human-in-the-Loop Approach to Enable Better Decision Making on Operations Maintenance
采用人机交互方法开发新颖的机器学习技术,以在运营维护方面做出更好的决策
  • 批准号:
    2440644
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Improving cattle health by developing novel data fusion and machine learning approaches to Internet of things livestock data
通过开发物联网牲畜数据的新型数据融合和机器学习方法来改善牛的健康
  • 批准号:
    2182032
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Developing a novel machine learning approach to construct effective personalised learning pathways in data science tuition
开发一种新颖的机器学习方法,在数据科学教学中构建有效的个性化学习路径
  • 批准号:
    104486
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了