Applying machine learning models to genome data to understand the evolution of drug resistance from virus to cancer evolution
将机器学习模型应用于基因组数据,以了解从病毒到癌症的耐药性演变
基本信息
- 批准号:2453134
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Studentship strategic priority area: Mathematics, statistics and computationKeywords: Virus evolution, cancer evolution, machine learning, genomicsTreatment of cancer and chronic infectious diseases often fail due to the evolution of resistance to therapy. Underpinning this phenomena is the generation of changes (mutations) in their genetic material. Mutations generate high levels of differences in the genomes of cancer cells or intra-patient virus populations that leads to their ability to evolve in response to drugs. Recent advances in genome sequencing have revealed genomic alterations that drive cancer progression and pathogen infection. These data give insight into the diseases' underlying evolutionary dynamics which follow predictions of both Darwin's theory of evolution and Motoo Kimura's theory of molecular evolution. Yet, how evolutionary dynamics interact with mutational processes, and whether these processes can predict clinical outcome is largely unknown. Due to the variety and complexity of genomic alterations observed across human, cancer and virus evolution, unified mathematical equations of evolution are often intractable. We propose to leverage state of the art machine learning methods applied to large scale genome sequencing data sets to build biologically informed data-driven models of evolutionary dynamics. These models permit efficient data analysis that account for the variety and complexity of genomic alterations observed across human, cancer and virus evolution. They will infer the life histories of disease processes and predict disease progression and effects of interventions. Early prediction of resistance to therapies is essential to maximising the potency of interventions and switching treatments when necessary. The student will be trained in a combination of data science and bioinformatics, with substantial elements of computation, programming and statistics/machine learning.
学生战略优先领域:数学、统计和计算关键词:病毒进化、癌症进化、机器学习、基因组学癌症和慢性传染病的治疗常常因治疗耐药性的进化而失败。这种现象的基础是其遗传物质发生变化(突变)。突变会在癌细胞或患者体内病毒群体的基因组中产生高度差异,从而导致它们能够响应药物而进化。基因组测序的最新进展揭示了驱动癌症进展和病原体感染的基因组改变。这些数据让我们深入了解疾病的潜在进化动力学,这些进化动力学遵循达尔文进化论和木村元夫分子进化论的预测。然而,进化动力学如何与突变过程相互作用,以及这些过程是否可以预测临床结果在很大程度上尚不清楚。由于在人类、癌症和病毒进化过程中观察到的基因组改变的多样性和复杂性,统一的进化数学方程通常很棘手。我们建议利用应用于大规模基因组测序数据集的最先进的机器学习方法来构建生物信息数据驱动的进化动力学模型。这些模型可以进行有效的数据分析,解释在人类、癌症和病毒进化过程中观察到的基因组改变的多样性和复杂性。他们将推断疾病过程的生命史并预测疾病进展和干预措施的效果。早期预测治疗耐药性对于最大限度地发挥干预措施的效力并在必要时更换治疗至关重要。学生将接受数据科学和生物信息学相结合的培训,其中包括计算、编程和统计/机器学习的实质内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Applying Spatial Covariance to Understand Human Variation in Genetic Disease
应用空间协方差来了解遗传疾病的人类变异
- 批准号:
10734426 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
- 批准号:
10619943 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
- 批准号:
2307150 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
- 批准号:
2307151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
What works, for whom? Applying novel precision medicine methods to people with mental illness in the justice system.
什么有效,对谁有效?
- 批准号:
10723566 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
- 批准号:
10731500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Applying Machine Learning to local structure in metallic systems for structural applications
将机器学习应用于金属系统的局部结构以实现结构应用
- 批准号:
2903293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复已删除的信息
- 批准号:
2317563 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing a blood fatty acid-based algorithm as an early predictor of insulin resistance: Applying machine learning to harmonized data from prospective cohort studies
开发基于血液脂肪酸的算法作为胰岛素抵抗的早期预测因子:将机器学习应用于前瞻性队列研究的统一数据
- 批准号:
10696711 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




