Financial Risk assessment of AI industry using a new machine Learning model
使用新的机器学习模型评估人工智能行业的财务风险
基本信息
- 批准号:2488399
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AI business has become the most anticipated technology industry and attracts a lot of investment. AI technology is closely related to all aspects of our lives and promotes innovation in traditional industries, including healthcare, education, telecommunications, manufacturing, retail, finance, etc. Moreover, at the national level, it affects citizens' safety and privacy, climate protection, industrial governance and economic policies. Countries are committed to building and developing long-term AI strategies. Therefore, the healthy and sustainable development of AI industry is essential. However, there are many AI start-ups that have become bankrupt due to suffering from financial risks, which has brought adverse impacts on stakeholders and society. Financial risks exist in every part of business management and are affected by various uncontrolled factors, which may result in poor financial status, credit default or even bankruptcy. It is imperative to build a warning model to assess and predict the financial distress of AI firms. Financial risk assessment is in essence a multiple criteria decision analysis (MCDA) problem, aiming to sort many alternatives or select the best solution through information aggregation. This study will use the Evidence Reasoning (ER) approach which is a data-driven machine learning method to predict corporate financial risk. Unlike traditional industries, the operation of AI industry has greater uncertainties, such as larger investment in R & D, more rapid technology update, and higher uncertainty in capital recovery periods, profit models or market demand forecast. General quantitative financial indicators alone (e.g. operational capability or profitability) cannot comprehensively evaluate the financial risks of AI start-ups. Combining the characteristics of AI start-ups, this research will also introduce a variety of qualitative criteria, such as investor status, technological innovation, team strength, talent motivation, market potential, competitive environment, human resource risk, etc. The ER approach is unique in dealing with MCDA problems of both quantitative and qualitative criteria, and will therefore be applied in this research. Data will be collected from failure and non-failure of AI start-ups during 2015-2019 in UK, USA and China, and training data and validating data will be separated by time. The research objects are firms that provide products or services highly correlated with AI technology, for example, firms whose main business income comes from AI research and development, including speech recognition, computer vision, natural language processing, cloud computing, sensors, robots, etc. More than 10,000 firms will be observed. Furthermore, in-depth interviews with a number of selected firms' managers or experts will be conducted by choosing two firms from each of the countries to be studied (e.g. China, USA and UK) as case studies to test the accuracy of the model. In particular, this research will consider whether AI start-ups are affected by COVID-19 since businesses may take years to recover from this pandemic.The contributions of this study are as follows. (1) This research will build a new financial risk prediction model of AI start-ups through the use of advanced data analytics and the ER approach with appropriate qualitative criteria, in order to enrich the theory of financial risk management. (2) It will provide an early warning mechanism to assist AI companies to identify problems or defects in financial management and to improve managers' risk awareness and ability. In addition, it can help investors and other stakeholders to rationally invest in or cooperate with AI firms. (3) Since AI technology has an important impact on economic development and social progress, this study can support countries to make AI industry specifications or technical standards, thereby guiding the healthy and sustainable development of AI industry.
AI业务已成为最受期待的科技行业,吸引了大量投资。人工智能技术与我们生活的方方面面密切相关,推动传统行业的创新,包括医疗、教育、电信、制造、零售、金融等。此外,在国家层面,它影响公民的安全和隐私、气候保护、产业治理和经济政策。各国致力于建立和发展长期的人工智能战略。因此,AI产业的健康可持续发展至关重要。然而,有很多AI初创公司因遭遇财务风险而破产,这给利益相关者和社会带来了不利影响。财务风险存在于企业经营管理的各个环节,受到各种不可控因素的影响,可能导致财务状况不佳、信用违约甚至破产。建立一个预警模型来评估和预测人工智能公司的财务困境是当务之急。财务风险评估本质上是一个多准则决策分析(MCDA)问题,其目的是通过信息聚合对多个方案进行排序或选择最优方案。本研究将使用证据推理(ER)这一数据驱动的机器学习方法来预测企业财务风险。与传统行业不同,AI行业的运营具有更大的不确定性,如研发投入更大,技术更新更快,资本回收期、盈利模式或市场需求预测的不确定性更高。仅有一般的量化财务指标(如运营能力或盈利能力)不能全面评估AI初创企业的财务风险。结合人工智能初创企业的特点,本研究还将引入投资者地位、技术创新、团队实力、人才动机、市场潜力、竞争环境、人力资源风险等多种定性标准。ER方法在处理MCDA定量和定性标准方面都是独一无二的,因此将应用于本研究。数据将收集2015-2019年英国、美国和中国AI初创企业失败和未失败的数据,培训数据和验证数据将按时间分开。研究对象是提供与人工智能技术高度相关的产品或服务的公司,例如主营业务收入来自人工智能研发的公司,包括语音识别、计算机视觉、自然语言处理、云计算、传感器、机器人等,将观察1万多家公司。此外,我们会从每个被研究的国家/地区(例如中国、美国和英国)中选出两间公司作为个案研究,与一些选定公司的经理或专家进行深入访谈,以测试模型的准确性。特别是,这项研究将考虑人工智能初创企业是否受到新冠肺炎的影响,因为企业可能需要数年时间才能从这场混乱中恢复过来。本研究的贡献如下。(1)本研究将运用先进的数据分析方法和具有适当定性标准的ER方法构建AI初创企业的财务风险预测模型,以丰富财务风险管理的理论。(2)提供预警机制,协助人工智能公司识别财务管理中的问题或缺陷,提高管理人员的风险意识和能力。此外,它还可以帮助投资者和其他利益相关者理性投资于人工智能公司或与其合作。(3)由于人工智能技术对经济发展和社会进步具有重要影响,本研究可以支持各国制定人工智能行业规范或技术标准,从而指导人工智能产业的健康、可持续发展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Corporate Failure Risk Assessment for Knowledge-Intensive Services Using the Evidential Reasoning Approach
- DOI:10.3390/jrfm15030131
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Meng-Meng Tan-Meng;Dongling Xu;Jianbo Yang
- 通讯作者:Meng-Meng Tan-Meng;Dongling Xu;Jianbo Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于移动健康技术干预动脉粥样硬化性心血管疾病高危人群的随机对照现场试验:The ASCVD Risk Intervention Trial
- 批准号:81973152
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
RISK通路在胃泌素介导的心脏缺血再灌注损伤保护中的作用研究
- 批准号:81800239
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
异氟烷基于TLR4/RISK/NF-κB调控糖尿病缺血性脑卒中后NLRP3炎症小体形成的机制研究
- 批准号:81771232
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
Notch1与RISK/SAFE/HIF-1α信号通路整合在I-postC保护中的作用及其机制
- 批准号:81260024
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Social Reward Processing Across the Lifespan: Identifying Risk Factors for Financial Exploitation
整个生命周期的社会奖励处理:识别金融剥削的风险因素
- 批准号:
10213369 - 财政年份:2021
- 资助金额:
-- - 项目类别:
SBIR Phase I: Machine learning emulators of weather and hydroclimate models for operational and financial risk assessment
SBIR 第一阶段:用于运营和财务风险评估的天气和水文气候模型的机器学习模拟器
- 批准号:
1843103 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Uncovering and Surveilling Financial Deception Risk in Aging
发现和监控老龄化过程中的财务欺诈风险
- 批准号:
10210345 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Uncovering and Surveilling Financial Deception Risk in Aging
发现和监控老龄化过程中的财务欺诈风险
- 批准号:
10448338 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Uncovering and Surveilling Financial Deception Risk in Aging
发现和监控老龄化过程中的财务欺诈风险
- 批准号:
10645913 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Uncovering and Surveilling Financial Deception Risk in Aging
发现和监控老龄化过程中的财务欺诈风险
- 批准号:
9766171 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Uncovering and Surveilling Financial Deception Risk in Aging
发现和监控老龄化过程中的财务欺诈风险
- 批准号:
10440656 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Credit risk assessment considering interconnectedness in financial market networks
考虑金融市场网络互联性的信用风险评估
- 批准号:
17K03813 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyzing Effects of Missing Data, Financial Data, and Corporate Information in Credit Risk Assessment of Japanese Small and Medium Enterprises
缺失数据、财务数据和企业信息对日本中小企业信用风险评估的影响分析
- 批准号:
24530355 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation of Auditors' judgments of Fraud Risk Assessment in Financial Statements Audit
财务报表审计中舞弊风险评估的审计师判断的制定
- 批准号:
21730378 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




