Scalable Online Machine Learning
可扩展的在线机器学习
基本信息
- 批准号:2599529
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many of the current problems within the modern machine learning sector involve dealing with ever growing datasets where accurately and efficiently estimating a posterior distribution to make predictions is very difficult due to being able to identify the correct information from datasets which is informative to modelling our target distribution. As well as volume, these models often increase in dimensionality (and therefore complexity) which current common methods such as Markov Chain Monte Carlo (MCMC)- sampling struggle to do efficiently, as they become much slower as the complexity of the model increases. Other types of sampling methods though have shown to scale much better than traditional MCMC. For example, Sequential Monte Carlo sampling (SMC) and Hamiltonian Monte Carlo (HMC) sampling scale a lot better with dimensionality. These techniques are nowhere near as well researched though and have their own problems, so improving upon these further by introducing Reversible Jump (RJ) MCMC and Mass Matrices (MM) will be a main stay of my research. My colleague Josh Murphy will be working on Concept Drift, and I will be working on Eternal Learning. Initially there may be some similarities on the research we undertake but due to the differences in problem concepts, this will start to diverge within the first year. However, further down the line there will likely be some collaboration as the methods developed in each area may have some overlap depending on the specific problem we are undertaking. Therefore, I will also be researching methods to compress data from a constant and endless source but so that little to no information is lost during our inference with the aforementioned sampling methods. This will need to be done, as for eternal learning, the first sample will be just as important as the most recent one. Finally, these new methods will be applied to a Bayesian deep learning context. In neural networks, backpropagation for use in calculating the weights and biases of models is very computationally expensive. Early research with using particle filters as an alternative (or in an ensemble method) to backpropagation has recently started in the past couple of years as they are less computationally expensive. I will expand upon this by implementing a quasi-differentiable SMC sampler (as opposed to a particle filter) to aid the optimization process in neural networks.
现代机器学习领域目前的许多问题都涉及到处理不断增长的数据集,在这些数据集中,准确有效地估计后验分布来进行预测是非常困难的,因为能够从数据集中识别正确的信息,这些信息对我们的目标分布建模是有用的。除了体积之外,这些模型通常会增加维度(因此也增加了复杂性),而目前常用的方法,如马尔可夫链蒙特卡罗(MCMC)采样,很难有效地做到这一点,因为随着模型复杂性的增加,它们会变得慢得多。其他类型的采样方法已经证明比传统的MCMC更好地扩展。例如,序贯蒙特卡罗采样(SMC)和汉密尔顿蒙特卡罗(HMC)采样在维度上的缩放效果要好得多。虽然这些技术还没有得到很好的研究,并且有自己的问题,所以通过引入可逆跳跃(RJ)MCMC和质量矩阵(MM)来进一步改进这些技术将是我研究的主要内容。我的同事Josh Murphy将致力于概念漂移,我将致力于永恒的学习。最初,我们进行的研究可能有一些相似之处,但由于问题概念的差异,这将在第一年内开始出现分歧。然而,随着我们正在处理的具体问题的不同,在每个领域开发的方法可能会有一些重叠,因此可能会有一些合作。因此,我也将研究从恒定和无尽的来源压缩数据的方法,但在我们使用上述采样方法进行推断的过程中,几乎没有信息丢失。这将需要完成,因为对于永恒的学习,第一个样本将与最近的样本一样重要。最后,这些新方法将应用于贝叶斯深度学习环境。在神经网络中,用于计算模型的权重和偏差的反向传播在计算上非常昂贵。使用粒子滤波器作为反向传播的替代方法(或集成方法)的早期研究最近在过去几年开始,因为它们的计算成本较低。我将通过实现准可微SMC采样器(与粒子滤波器相反)来扩展这一点,以帮助神经网络中的优化过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
online SPE/HPLC-ICP-MS多元素形态分析新方法研究荷塘中铬砷镉汞铅的迁移转化规律
- 批准号:21976048
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
双积分政策下基于Online Review的新能源汽车企业跨链决策优化研究
- 批准号:71964023
- 批准年份:2019
- 资助金额:27.5 万元
- 项目类别:地区科学基金项目
面向Online-to-Offline智能商务的大数据融合与应用
- 批准号:91646204
- 批准年份:2016
- 资助金额:201.0 万元
- 项目类别:重大研究计划
Online-to-Offline商务环境下"切客"一族生活模式挖掘研究
- 批准号:71172046
- 批准年份:2011
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
- 批准号:
2311582 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Heterogeneity and Long-term Effect of Sustainable Behavior: Online Survey Experiments and Machine Learning
可持续行为的异质性和长期影响:在线调查实验和机器学习
- 批准号:
22K01463 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal Online Machine Learning Algorithms
最佳在线机器学习算法
- 批准号:
555789-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
- 批准号:
2215998 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Investigation of particle bonding dynamics during powder molding by online monitoring and machine learning analysis
通过在线监测和机器学习分析研究粉末成型过程中的颗粒结合动力学
- 批准号:
21K14039 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Application of Digital Forensics and Machine Learning to Automatically Detect and Flag Modified Online Terrorist Propaganda
应用数字取证和机器学习自动检测和标记经过修改的在线恐怖宣传
- 批准号:
2598763 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Optimal Online Machine Learning Algorithms
最佳在线机器学习算法
- 批准号:
555789-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: Developing Online Laboratories for Computer Science Students to Learn How to Build Accessible Software and to Use Artificial Intelligence/Machine Learning
合作研究:为计算机科学专业的学生开发在线实验室,以学习如何构建无障碍软件和使用人工智能/机器学习
- 批准号:
2111108 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant