Mechanism and Assessment of Hypoxia-Induced Islet Death

缺氧引起的胰岛死亡的机制和评估

基本信息

  • 批准号:
    6863682
  • 负责人:
  • 金额:
    $ 15.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-03-01 至 2008-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Transplantation of human islets has the potential to cure Type I diabetes. However, death of human islets during isolation and after transplantation has been a major problem in the efficient transplantation of islets. A critical factor in islet survival may be hypoxia, which islets are subjected to at various degrees during all stages of islet transplantation including the storage of the pancreas, isolation, purification and culture of the islets, and after transplantation. Hypoxia results in death of islet cells, however it is not known what mechanism(s) mediate the process. We hypothesize that even short periods of hypoxia induce apoptosis in the islet cell, and that the islet death process may occur 24-48 hours after the hypoxic insult. The distinction between apoptosis and necrosis is clinically relevant since therapeutic strategies targeting the two processes would be different. In Specific Aim 1, we first quantify the time course of islet cell death and apoptosis in relation to different degrees and durations of hypoxia. It will be determined whether standard markers for apoptosis including activation of caspase 3 and translocation of cytochrome c from the mitochondria to the cytosol are observed prior to necrosis. In Specific Aim 2, a systems physiology approach to mitochondrial function will be applied to the assessment of islet viability. Sophisticated non-invasive detection technology combined with our recently developed flow culture system will be utilized to continuously assess oxygen consumption, redox state of cytochromes, and insulin secretion that will quantify transition states akin to vital signs in whole organisms. Mitochondrial function and the progression of apoptosis are linked, and our data shows that continuous assessment of metabolic state may distinguish the initiation and progression of apoptosis and necrosis. We will test the hypothesis that a metabolic threshold can be empirically derived that when exceeded will irreversibly result in islet cell death, loss of insulin secretory function and thereby transplant failure. This hypothesis embodies our notion that metabolical viability will be a better predictor of insulin secretory function of islets after transplantation than in vitro tests of insulin secretion which have been shown not to correlate with transplant success. Finally, we will use the assessment approach to evaluate whether improved oxygenation of the islets by flow culture prevents hypoxia-induced cell death observed in statically cultured islets. The benefits of the proposed research are evaluation of the contribution of hypoxia to islet death in islet isolation thereby laying the foundation for cytoprotective therapies against hypoxia induced islet death. In addition, the development of an islet flow culture system that both assesses and optimally maintains islets will be an important advancement in the field of transplantation based on its ability to predict and improve transplantation efficacy.
描述(申请人提供):人类胰岛移植具有治愈I型糖尿病的潜力。然而,人胰岛在分离过程中和移植后死亡一直是胰岛有效移植的主要问题。胰岛存活的一个关键因素可能是低氧,在胰岛移植的所有阶段,包括胰腺的保存、胰岛的分离、纯化和培养,以及移植后,胰岛都会受到不同程度的损伤。低氧导致胰岛细胞死亡,但目前尚不清楚是什么机制(S)介导了这一过程。我们假设,即使是短时间的低氧也会诱导胰岛细胞的凋亡,并且胰岛的死亡过程可能发生在低氧损伤后24-48小时。细胞凋亡和坏死之间的区别在临床上是相关的,因为针对这两个过程的治疗策略是不同的。 在具体目标1中,我们首先量化了胰岛细胞死亡和凋亡的时间进程与不同程度和持续时间的缺氧的关系。将确定在坏死之前是否观察到标准的凋亡标志物,包括caspase3的激活和细胞色素c从线粒体到胞浆的移位。在具体目标2中,线粒体功能的系统生理学方法将被应用于胰岛活性的评估。先进的非侵入性检测技术与我们最近开发的流动培养系统相结合,将被用于持续评估氧气消耗、细胞色素的氧化还原状态和胰岛素分泌,从而量化整个生物体的类似生命体征的过渡状态。线粒体功能和细胞凋亡的进程是相联系的,我们的数据表明,对代谢状态的持续评估可以区分细胞凋亡和坏死的启动和进展。我们将测试这样一个假设,即代谢阈值可以从经验上推导出来,当超过这个阈值时,将不可逆转地导致胰岛细胞死亡、胰岛素分泌功能丧失,从而导致移植失败。这一假设体现了我们的观点,即与胰岛素分泌的体外试验相比,代谢活性将更好地预测移植后胰岛的胰岛素分泌功能,后者已被证明与移植成功无关。最后,我们将使用评估方法来评估通过流动培养改善胰岛的氧合是否可以防止在静态培养的胰岛中观察到的缺氧诱导的细胞死亡。这项研究的好处是评估了低氧对胰岛分离后死亡的贡献,从而为针对低氧诱导的胰岛死亡的细胞保护治疗奠定了基础。此外,基于其预测和提高移植疗效的能力,开发一种既能评估胰岛又能以最佳方式维持胰岛的胰岛流式培养系统将是移植领域的重要进展。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contribution of calcium influx in mediating glucose-stimulated oxygen consumption in pancreatic islets.
钙流入在介导胰岛葡萄糖刺激的耗氧量中的作用。
  • DOI:
    10.2337/db06-0400
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Sweet,IanR;Gilbert,Merle
  • 通讯作者:
    Gilbert,Merle
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IAN R SWEET其他文献

IAN R SWEET的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IAN R SWEET', 18)}}的其他基金

Mechanism and Assessment of Hypoxia-Induced Islet Death
缺氧引起的胰岛死亡的机制和评估
  • 批准号:
    6707020
  • 财政年份:
    2004
  • 资助金额:
    $ 15.16万
  • 项目类别:
INTEGRATIVE APPROACH TO UNDERSTAND ETIOLOGY & CAUSES OF TYPE II DIABETES
了解病因的综合方法
  • 批准号:
    6119782
  • 财政年份:
    1998
  • 资助金额:
    $ 15.16万
  • 项目类别:
Core D: Cell Function Analysis Core
核心D:细胞功能分析核心
  • 批准号:
    8787098
  • 财政年份:
  • 资助金额:
    $ 15.16万
  • 项目类别:
Core D: Cell Function Analysis Core
核心D:细胞功能分析核心
  • 批准号:
    8635331
  • 财政年份:
  • 资助金额:
    $ 15.16万
  • 项目类别:
Core D: Cell Function Analysis Core
核心D:细胞功能分析核心
  • 批准号:
    8441164
  • 财政年份:
  • 资助金额:
    $ 15.16万
  • 项目类别:

相似海外基金

Exploring multidisciplinary approaches from Stem Cell Biology and Microengineering to biomanufacture perfused organoids
探索从干细胞生物学和微工程到生物制造灌注类器官的多学科方法
  • 批准号:
    BB/W018470/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Research Grant
RACE: RNA and Cell Biology - from Fundamental Research to Therapies
RACE:RNA 和细胞生物学 - 从基础研究到治疗
  • 批准号:
    10072977
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    EU-Funded
Ancillary SOURCE Study: Characterization of Small Airway Basal Cell Biology in Early COPD
辅助来源研究:早期 COPD 中小气道基底细胞生物学的特征
  • 批准号:
    10736644
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
Using Salmonella Pathogenesis and Cell Biology as a Discovery Tool
使用沙门氏菌发病机制和细胞生物学作为发现工具
  • 批准号:
    10665946
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
  • 批准号:
    10683443
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
2023 Cell Biology of Metals Gordon Research Conference and Gordon Research Seminar
2023金属细胞生物学戈登研究会议暨戈登研究研讨会
  • 批准号:
    10753741
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
Evaluating unique aspects of quiescent ovarian cancer cell biology for therapeutic targets
评估静息卵巢癌细胞生物学的独特方面以寻找治疗靶点
  • 批准号:
    10750118
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
2023 Cell Biology of Megakaryocytes and Platelets Gordon Research Conference and Gordon Research Seminar
2023巨核细胞和血小板细胞生物学戈登研究会议暨戈登研究研讨会
  • 批准号:
    10608747
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
How does the Scar/WAVE complex control actin protrusions and cell migration? A combined cell biology and cryo-EM approach.
Scar/WAVE 复合物如何控制肌动蛋白突出和细胞迁移?
  • 批准号:
    MR/X000702/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Research Grant
RCN-UBE: Cell Biology Education Consortium: Pathway to Publication
RCN-UBE:细胞生物学教育联盟:出版途径
  • 批准号:
    2316122
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了