Lyapunov exponent

李亚普诺夫指数

基本信息

  • 批准号:
    2602125
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to get a better understanding of the bifurcation scenarios for noise-dependent random dynamical system which display a transition from trivial to emergence of chaos, as the noise strength increases. It is known that this transition is observed by the change of the sign of a statistical quantity called Lyapunov exponent, but little is known of the geometric mechanism generating this transition. It is known that in the deterministic system this transition to chaos is accompanied with a stretching and folding mechanism and the emergence of chaotic sets called horseshoes. In this project, we aim to check whether similar objects exist for the random settings or to establish the existence of analogous ones.The importance of understanding the mechanism that rule chaotic dynamical systems is important in all sciences as numerous phenomena, for example climatic and medical ones, display chaotic behaviour in the sense that they are very sensitive to initial condition: a small modification somewhere leads to a big change in the outcome.The first aim of this project is to characterize topologically the behaviour of random systems with positive Lyapunov exponent, in particular trying to establish the existence of random version of horseshoes generated by homoclinic intersections. Another goal is to establish a qualitative characterization of the phenomenon of transient chaos, which means that trajectories still converge to an equilibrium, but the convergence is slow and non uniform in the state space. Very little is known about the phenomenon of transient chaos, so the aim is to get a better understanding at it.Currently, there is almost no literature on the existence of horseshoe for random dynamical systems, except for some very specific cases, and the results are much weaker than the deterministic analogous. The main issue is that current technique fail at estimating return times when randomness kicks in. Also the phenomenon of transient chaos is poorly understood, and the main known results are related to prototypical examples and it is impossible to develop some general theory. Indeed, current techniques are privileged of random systems generated by stochastic differential equation, in which the property of Brownian motion allows to compute some statistics via Kolmogorov equations, which are not in general computable. In order to overcome this issue, we developed the tool of random hyperbolic times and adopt large deviations technique in order to control the measure of the points in the state space which slower expansion rates, and used probabilistic techniques to establish a measure one existence of a random version of an horseshoe for a class of non uniformly hyperbolic random systems with positive Lyapunov exponents. To our knowledge, we are the first to obtain this sort of result and we expect this kind of result to be generalized to a larger class of systems.This project has collaborators, Dr Jeroen Lamb and Dr Dimitry Turaev.This project falls within the EPSRC statistics and applied probability research area.
本项目旨在更好地理解噪声相关随机动力系统的分岔场景,随着噪声强度的增加,该系统显示出从平凡到混沌出现的过渡。人们知道,这种转变是观察到的变化的统计量称为李雅普诺夫指数的符号,但鲜为人知的几何机制产生这种转变。众所周知,在确定性系统中,这种向混沌的过渡伴随着拉伸和折叠机制以及称为马蹄铁的混沌集的出现。在这个项目中,我们的目标是检查是否存在类似的对象的随机设置或建立类似的存在。理解的重要性,规则混沌动力系统的机制是很重要的,在所有的科学作为许多现象,例如气候和医学,显示混沌行为的意义上,他们是非常敏感的初始条件:这个项目的第一个目标是从拓扑上描述具有正李雅普诺夫指数的随机系统的行为,特别是试图建立由同宿相交产生的随机版本的马蹄铁的存在性。另一个目标是建立瞬态混沌现象的定性表征,这意味着轨迹仍然收敛到一个平衡点,但收敛速度很慢,并且在状态空间中是不均匀的。人们对瞬态混沌现象知之甚少,所以我们的目的是更好地理解它。目前,除了一些非常特殊的情况外,几乎没有关于随机动力系统马蹄铁存在性的文献,而且其结果比确定性类比弱得多。主要的问题是,当随机性开始时,当前的技术无法估计返回时间。此外,对瞬态混沌现象的理解还很有限,主要的已知结果都与原型例子有关,不可能发展出一些通用的理论。实际上,目前的技术是由随机微分方程产生的随机系统的特权,其中布朗运动的性质允许通过Kolmogorov方程计算一些统计数据,这些统计数据通常是不可计算的。为了克服这一问题,我们开发了随机双曲时间工具,采用大偏差技术来控制状态空间中扩张速率较慢的点的测度,并利用概率技术建立了一类具有正Lyapunov指数的非一致双曲随机系统的随机马蹄铁的测度存在性.据我们所知,我们是第一个获得这种结果,我们希望这种结果可以推广到更大的一类系统。这个项目有合作者,博士Jeroen兰姆和博士Dimitry Turaev。这个项目福尔斯EPSRC统计和应用概率研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Critical exponent for nonlinear Schroedinger equations
非线性薛定谔方程的临界指数
  • 批准号:
    23K03160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
パラメータに依存する Furstenberg measure の絶対連続性
Furstenberg 测量的绝对连续性取决于参数
  • 批准号:
    21K13814
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ヒストリー的挙動を許容する可微分力学系の創発性の研究
研究允许历史行为的可微动力系统的涌现特性
  • 批准号:
    18K03376
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear partial differential equations with Sobolev supercritical exponent
具有Sobolev超临界指数的非线性偏微分方程分析
  • 批准号:
    17K14223
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
An Investigation on Realization Mechanisms of Exponent
指数实现机制的研究
  • 批准号:
    17K13447
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
High-Temperature Creep Mechanism of Dual-Ductile-Phase Magnesium alloy with Long-Period Stacking Ordered Phase
长周期堆垛有序相双韧性相镁合金的高温蠕变机理
  • 批准号:
    16K06707
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Renormalization group approach to non-Markov processes on fractals
分形非马尔可夫过程的重整化群方法
  • 批准号:
    16K05210
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The pathophysiological mechanisms between treatment-resistance mood disorder and insulin resistance(Fostering Joint International Research)
治疗抵抗性情绪障碍与胰岛素抵抗之间的病理生理机制(促进国际联合研究)
  • 批准号:
    15KK0295
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
A study on wavelets and function spaces with variable exponent based on real analysis
基于实分析的小波与变指数函数空间研究
  • 批准号:
    15K04928
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of detonation wave instablity for reactive materials with large isentropic exponent
大等熵指数反应材料爆轰波不稳定性表征
  • 批准号:
    481365-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了