Engineering the Intracellular Micro- and Nanoenvironment
细胞内微米和纳米环境工程
基本信息
- 批准号:7981513
- 负责人:
- 金额:$ 231万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAreaBehaviorBiochemicalBiologicalCell divisionCell physiologyCellsChemicalsDevelopmentElementsEngineeringEnvironmentGene FusionGenesHealthHumanInvestigationJoystickLigandsLocationMagnetismMechanicsMolecularMovementOutcomePatternProcessRoleSignal TransductionSlideSystemabstractingbasecell motilityinterestknockout genenanonanoparticlenanoscaleparticleresearch studytool
项目摘要
DESCRIPTION (Provided by the applicant)
Abstract: Localization of biochemical signaling internal to cells is critical for cellular function, affecting a variety of processes of importance in human health, including cell division, differentiation, motility, and inter- and intracellular signaling. As such, biologists are keenly interested in studying and probing the role of biomolecule localization, and have developed molecular biological tools in order to selectively perturb local environments internal to cells. Although these tools, including gene knockouts, gene fusions, and photoactivated ligands, have allowed some investigation into localization effects, a simple and robust approach that is broadly applicable to precisely localize a range of biomolecules intracellularly is critically lacking. Magnetic nanoparticles can be conjugated to a range of biomolecules of interest and are readily uptaken by most cells, but intracellular manipulation and localization has been limited by the strong field gradients required to create appreciable forces on such small particles. This limitation has been overcome by using magnetic-gradient enhancing substrates ("nano-active slides") that elicit modal behavior. Using this approach allows for the robust transformation of macroscale movements of an external magnet to nanoscale movements of intracellular environment-modifying nanoparticle ensembles. Dynamically localized nanoparticles can then act to transduce a variety of chemical, mechanical, and thermal signals with unprecedented control. Achieving the full potential of nanoparticle-based intracellular engineering, including joystick-based dynamic control of the intracellular nanoenvironment and precision perturbation of intracellular locations in massively parallel arrays will require additional investigation and development. Thrust areas will include nanoparticle conjugation and delivery, transparent substrate development, cell patterning and alignment to magnetic elements, and development of joystick-based control systems for nanoparticle movement. Although the most significant impact will be in creating a general platform for biological experimentation, concurrent with developing tools for precision engineering of intracellular environments we will also use these tools for initial pioneering studies of the effect of localization in cellular motility and Ca2+ propagation internal to cells. These experiments will potentially culminate in the ability to remotely control cell movement and extract quantitative understanding of key factors required for cell migration through engineering its outcome.
Public Health Relevance: By developing simple tools for precise control of nanoparticles locally within cells it will be possible to understand and control aspects of cell behavior that could not be probed previously. Similar to how we investigate large-scale physiology by perturbing local organ systems, these type of tools will allow a more mathematical understanding of cell behavior through perturbation of sub-cellular locations and organelles in time and space. Ultimately, this type of tool will be broadly used by biologists to uncover unique aspects of cellular function that directly impact human health.
描述(由申请人提供)
摘要:细胞内部生化信号传导的定位对于细胞功能至关重要,影响人类健康中的多种重要过程,包括细胞分裂、分化、运动性以及细胞间和细胞内信号传导。因此,生物学家对研究和探索生物分子定位的作用非常感兴趣,并开发了分子生物学工具,以便选择性地干扰细胞内部的局部环境。虽然这些工具,包括基因敲除,基因融合,和光活化配体,已经允许一些本地化效果的调查,一个简单而强大的方法,广泛适用于精确定位的范围内的生物分子是严重缺乏。磁性纳米颗粒可以与一系列感兴趣的生物分子缀合,并且容易被大多数细胞摄取,但是细胞内操作和定位受到在这样的小颗粒上产生可观的力所需的强场梯度的限制。这种限制已经通过使用引起模态行为的磁梯度增强基底(“纳米活性载玻片”)来克服。使用这种方法允许外部磁体的宏观尺度运动到细胞内环境修饰纳米颗粒集合的纳米尺度运动的稳健转换。动态定位的纳米粒子可以通过前所未有的控制来消除各种化学,机械和热信号。实现基于纳米颗粒的细胞内工程的全部潜力,包括基于微杆的细胞内纳米环境的动态控制和大规模平行阵列中细胞内位置的精确扰动,将需要额外的研究和开发。推进领域将包括纳米粒子结合和递送、透明基底开发、细胞图案化和与磁性元件对准,以及开发用于纳米粒子移动的基于磁杆的控制系统。虽然最重要的影响将是在创建一个通用的生物学实验平台,同时开发工具的精密工程的细胞内环境,我们也将使用这些工具的初始开拓性研究的影响,在细胞运动和Ca2+传播内部的细胞定位。这些实验可能最终能够远程控制细胞运动,并通过工程设计其结果来定量了解细胞迁移所需的关键因素。
公共卫生相关性:通过开发简单的工具来精确控制细胞内的纳米颗粒,将有可能理解和控制以前无法探测的细胞行为的各个方面。类似于我们如何通过扰动局部器官系统来研究大规模生理学,这些类型的工具将允许通过扰动亚细胞位置和细胞器在时间和空间上对细胞行为进行更多的数学理解。最终,这种类型的工具将被生物学家广泛使用,以揭示直接影响人类健康的细胞功能的独特方面。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Flexible and stretchable micromagnet arrays for tunable biointerfacing.
- DOI:10.1002/adma.201404849
- 发表时间:2015-02-11
- 期刊:
- 影响因子:29.4
- 作者:Tseng, Peter;Lin, Jonathan;Owsley, Keegan;Kong, Janay;Kunze, Anja;Murray, Coleman;Di Carlo, Dino
- 通讯作者:Di Carlo, Dino
Metallization and biopatterning on ultra-flexible substrates via dextran sacrificial layers.
通过葡聚糖牺牲层在超柔性基材上进行金属化和生物图案化。
- DOI:10.1371/journal.pone.0106091
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Tseng,Peter;Pushkarsky,Ivan;DiCarlo,Dino
- 通讯作者:DiCarlo,Dino
Substrates with patterned extracellular matrix and subcellular stiffness gradients reveal local biomechanical responses.
- DOI:10.1002/adma.201304607
- 发表时间:2014-02-26
- 期刊:
- 影响因子:29.4
- 作者:Tseng, Peter;Di Carlo, Dino
- 通讯作者:Di Carlo, Dino
Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior.
- DOI:10.1038/nmeth.2210
- 发表时间:2012-11
- 期刊:
- 影响因子:48
- 作者:Tseng, Peter;Judy, Jack W.;Di Carlo, Dino
- 通讯作者:Di Carlo, Dino
Publisher Correction: Elastomeric sensor surfaces for high-throughput single-cell force cytometry.
出版商更正:用于高通量单细胞力细胞术的弹性体传感器表面。
- DOI:10.1038/s41551-018-0207-0
- 发表时间:2018
- 期刊:
- 影响因子:28.1
- 作者:Pushkarsky,Ivan;Tseng,Peter;Black,Dylan;France,Bryan;Warfe,Lyndon;Koziol-White,CynthiaJ;JesterJr,WilliamF;Trinh,RyanK;Lin,Jonathan;Scumpia,PhilipO;Morrison,SherieL;PanettieriJr,ReynoldA;Damoiseaux,Robert;DiCarlo,Dino
- 通讯作者:DiCarlo,Dino
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dino Di Carlo其他文献
Dino Di Carlo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dino Di Carlo', 18)}}的其他基金
Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
- 批准号:
10411907 - 财政年份:2021
- 资助金额:
$ 231万 - 项目类别:
Enhancing the potency of mesenchymal stem cell therapies for kidney diseases using lab-on-a-particle technology
使用粒子实验室技术增强间充质干细胞治疗肾脏疾病的效力
- 批准号:
10373803 - 财政年份:2021
- 资助金额:
$ 231万 - 项目类别:
Lab on a particle technology for functional screening of therapeutic cells
用于治疗细胞功能筛选的粒子技术实验室
- 批准号:
10272940 - 财政年份:2021
- 资助金额:
$ 231万 - 项目类别:
Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
- 批准号:
10193200 - 财政年份:2021
- 资助金额:
$ 231万 - 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
- 批准号:
10213026 - 财政年份:2020
- 资助金额:
$ 231万 - 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
- 批准号:
10440285 - 财政年份:2020
- 资助金额:
$ 231万 - 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
- 批准号:
10683974 - 财政年份:2020
- 资助金额:
$ 231万 - 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
- 批准号:
10599275 - 财政年份:2019
- 资助金额:
$ 231万 - 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
- 批准号:
10428473 - 财政年份:2019
- 资助金额:
$ 231万 - 项目类别:
Engineering Yeast towards High Titer Production of Monoterpene Indole Alkaloid Natural Products
工程酵母用于高滴度生产单萜吲哚生物碱天然产物
- 批准号:
10735587 - 财政年份:2018
- 资助金额:
$ 231万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10536558 - 财政年份:2022
- 资助金额:
$ 231万 - 项目类别:
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10665597 - 财政年份:2022
- 资助金额:
$ 231万 - 项目类别:
Elucidation of the functional role of neural stem cells in the area postrema in the regulation of feeding behavior
阐明后区神经干细胞在调节摄食行为中的功能作用
- 批准号:
21K15177 - 财政年份:2021
- 资助金额:
$ 231万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation Analysis of Networked Compact City Considering the Wandering Behavior in the Urban Function and Residential guidance Area.
考虑城市功能与居住引导区游走行为的网络化紧凑城市评价分析。
- 批准号:
21K04296 - 财政年份:2021
- 资助金额:
$ 231万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
What is the origin of friction force depending on the sliding velocity? Approach from atomic-scale behavior in real area of contact
取决于滑动速度的摩擦力的来源是什么?
- 批准号:
20K04115 - 财政年份:2020
- 资助金额:
$ 231万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
10242872 - 财政年份:2019
- 资助金额:
$ 231万 - 项目类别:
Elucidating roles of ventral tegmental area dopaminergic neurons in motivation of appetitive goal-directed behavior
阐明腹侧被盖区多巴胺能神经元在食欲目标导向行为的激励中的作用
- 批准号:
19K03381 - 财政年份:2019
- 资助金额:
$ 231万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
9926602 - 财政年份:2019
- 资助金额:
$ 231万 - 项目类别:
Investigating the interplay between ventral tegmental area dopamine, medial orbitofrontal cortex, and ventromedial striatum in compulsive-like behavior
研究强迫样行为中腹侧被盖区多巴胺、内侧眶额皮质和腹内侧纹状体之间的相互作用
- 批准号:
9393053 - 财政年份:2018
- 资助金额:
$ 231万 - 项目类别:
Role of Lateral Hypothalmic Area Perineuronal Nets in the Reinstatement of Cocaine-Seeking Behavior
外侧下丘脑区神经周围网络在恢复可卡因寻求行为中的作用
- 批准号:
9598308 - 财政年份:2018
- 资助金额:
$ 231万 - 项目类别:














{{item.name}}会员




