Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
基本信息
- 批准号:7142905
- 负责人:
- 金额:$ 21.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The broad goals of this project are the development of novel theoretical models and practical computational tools that will improve and facilitate the process of modeling and simulating bio-molecules. The new models will be based on "implicit solvent" approach in which individual water molecules and mobile solvent ions are replaced by a continuous medium with the average properties of the solvent. Currently, the "engine" of the methodology - responsible for the estimation of the key electrostatic interactions - is either the generalized Born (GB) or the Poisson Boltzmann model (PB). The GB model is computationally efficient, but lacks the critical accuracy of the fundamental, but computationally expensive PB approach. Within the proposed approach, exact solutions of the PB equation for typical molecular shapes will serve as the foundation for deriving computationally efficient, analytical models. The models will go beyond the current generation of the generalized Born (GB) models, in both accuracy and efficiency. New important features will be added, such as the ability to compute electrostatic potential at every point in space: potential generated by a bio-molecule is often a key determinant of its function. For large compounds, e.g. multi-protein complexes, viral capsids, the ribosome or the nucleosome, the proposed approach may be the only practical way to generate potential maps with the power of a desktop computer. Approaches specifically targeted to speed-up simulations based on the implicit solvent models will be developed. They will be based upon coarse-graining of the charge distribution and will not have the significant artifacts typical of the "standard" schemes in which interactions beyond a specified distance are neglected. The methods will yield at least a 10-fold increase in computational speed for large bio-molecular structures. The use of the new models will be expanded to applications where the GB model is currently not applied, but where computational speed and accuracy are critical, for example in quantum mechanics-molecular mechanics (QM-MM) calculations on bio-molecules. The fast, analytical models of solvation will become more dependable. The models will be used to gain insights into the molecular mechanism of enhanced flexibility of short DNA fragments. RELEVANCE: Molecular modeling and simulations are nowadays indispensable tools in biomedical science and the drug discovery process. The proposed methods will significantly enhance their accuracy and speed.
描述(由申请人提供):该项目的主要目标是开发新的理论模型和实用的计算工具,以改善和促进建模和模拟生物分子的过程。新模型将基于“隐式溶剂”方法,其中单个水分子和移动的溶剂离子被具有溶剂平均性质的连续介质取代。目前,“引擎”的方法-负责估计的关键静电相互作用-是广义玻恩(GB)或泊松玻尔兹曼模型(PB)。GB模型计算效率高,但缺乏基本的关键精度,但计算昂贵的PB方法。在所提出的方法中,PB方程的典型分子形状的精确解将作为计算效率高,分析模型推导的基础。该模型在精度和效率上都将超过当前一代的广义玻恩(GB)模型。将增加新的重要功能,例如计算空间中每个点的静电势的能力:生物分子产生的电势通常是其功能的关键决定因素。对于大的化合物,例如多蛋白质复合物,病毒衣壳,核糖体或核小体,所提出的方法可能是唯一实用的方法来生成潜在的地图与台式计算机的功率。将开发基于隐式溶剂模型的专门针对加速模拟的方法。它们将基于电荷分布的粗粒化,并且不会具有“标准”方案中典型的显著伪影,其中忽略了超过指定距离的相互作用。这些方法将使大型生物分子结构的计算速度提高至少10倍。新模型的使用将扩展到目前未应用GB模型但计算速度和准确性至关重要的应用,例如生物分子的量子力学-分子力学(QM-MM)计算。溶剂化的快速分析模型将变得更加可靠。这些模型将用于深入了解短DNA片段增强灵活性的分子机制。相关性:分子建模和模拟是当今生物医学科学和药物发现过程中不可或缺的工具。所提出的方法将显着提高其准确性和速度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXEY VLAD ONUFRIEV其他文献
ALEXEY VLAD ONUFRIEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXEY VLAD ONUFRIEV', 18)}}的其他基金
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10344019 - 财政年份:2022
- 资助金额:
$ 21.88万 - 项目类别:
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10544161 - 财政年份:2022
- 资助金额:
$ 21.88万 - 项目类别:
Explicit ions in implicit solvent: fast and accurate.
隐式溶剂中的显式离子:快速、准确。
- 批准号:
9808072 - 财政年份:2019
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8182362 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
- 批准号:
7479091 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8719123 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
- 批准号:
7906774 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8322555 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8520321 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
- 批准号:
7269462 - 财政年份:2006
- 资助金额:
$ 21.88万 - 项目类别:
相似国自然基金
皮层蛋白羧基端功能的酪氨酸磷酸化调节机制及其在肿瘤细胞运动中的作用研究
- 批准号:30771126
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Pyrrole-Modified Porphyrins: Platforms to Probe the Malleability of Porphyrinoid Conformation and Aromaticity
吡咯修饰的卟啉:探测类卟啉构象的延展性和芳香性的平台
- 批准号:
2400038 - 财政年份:2024
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
CAREER: Controlling Chain Conformation in Amorphous Polymers through Soft Nanoscale Confinement
职业:通过软纳米级限制控制非晶态聚合物的链构象
- 批准号:
2339425 - 财政年份:2024
- 资助金额:
$ 21.88万 - 项目类别:
Continuing Grant
Hyper-Raman Spectroscopic Investigation of Protein Conformation Associated with Osmolytes and Water Molecules
与渗透物和水分子相关的蛋白质构象的超拉曼光谱研究
- 批准号:
24K17652 - 财政年份:2024
- 资助金额:
$ 21.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 21.88万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别:
smFRET analysis of TDP-43 conformation under the effect of Hero proteins
Hero蛋白作用下TDP-43构象的smFRET分析
- 批准号:
22KJ0814 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
- 批准号:
10677439 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
- 批准号:
10678562 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别:
Thick and Thin Filament Dysfunction in Obese Heart Failure with Preserved Ejection Fraction
射血分数保留的肥胖性心力衰竭的粗细丝功能障碍
- 批准号:
10678204 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别:
A Novel Gene Therapy Approach to Prevent Alpha-synuclein Misfolding in Multiple System Atrophy
一种防止多系统萎缩中α-突触核蛋白错误折叠的新基因治疗方法
- 批准号:
10673418 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别: