Object-Centric Visual Representation And Reinforcement Learning
以对象为中心的视觉表示和强化学习
基本信息
- 批准号:2722103
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Abstract We will develop new object-centric sequence models for vision, with the intention to improve data-efficiencyand robustness to out-of-distribution environments for video prediction and vision-based reinforcement learning.Aims And Objectives The first stage of the proposed research aims to combine temporal predictive coding with object centric learning and apply the resulting model to video prediction. This stage will aim to answer several questions:What requirements should an object-centric video model satisfy? How can these requirements be reflected in the designof OCTPC? How should object properties, instantaneous attribute variables, stochastic temporal evolution of attributevariables, and inter-object relationships be represented? How should object instances be represented differently to objecttypes? How precisely should the temporal predictive coding mechanism be specified such that it is capable of learningsufficiently long-term dependencies? What are the commonalities and differences between existing approaches to object centric learning, and how do these relate to the performance of such algorithms? How does OCTPC perform on a variety ofvideo-prediction benchmarks? Which design choices and hyperparameters have the greatest effect on performance? Howdoes the performance, behaviour, and learning efficiency of OCTPC compare with models which aren't object-centric, orwhich don't use predictive coding?1The second stage of the proposed research aims to explore the possible benefits of OCTPC in reinforcement learning.There are two primary motivations for doing so. Firstly, reinforcement learning effectively depends on being able to predictthe future, because the ultimate objective is to choose a policy which maximises expected long-term future reward. It isplausible that a using a performant video prediction model as a component in model-based reinforcement learning wouldallow an agent to make more accurate predictions of how changes in policy would affect future experience, and thereforehow the policy should be changed in order to maximise future reward. Secondly, there is a neuroscientific principle whichstates that "the processing function of neocortical modules is qualitatively similar in all neocortical regions... there isnothing intrinsically motor about the motor cortex, nor sensory about the sensory cortex." [13]. Therefore, if it is foundthat object-centric inductive biases are useful for video prediction, then it may be the case that similar inductive biasesare useful in policy representations as well. It would be interesting to compare such policy representations to existingwork in hierarchical reinforcement learning [17], and explore whether such representations can improve sample-efficiencyin reinforcement learning, and robustness to out-of-distribution environments.Novelty Of The Research Methodology To our knowledge, combining temporal predictive coding with object-centriclearning has not previously been explored. It is plausible that exploring this combination will provide valuable contributionsand insights to machine learning, while also providing value to the cognitive sciences by moving closer to an understandingof human intelligence on the algorithmic level.Alignment To EPSRC's Strategies And Research Areas This research proposal aligns with the areas of Artificialintelligence and robotics theme, Artificial intelligence technologies, and Image and vision computing.
摘要我们将开发新的以对象为中心的序列模型的视觉,目的是提高数据的efficiencyand鲁棒性的视频预测和基于视觉的reinforcement learning.Aims和Objectives的分布环境的第一阶段的拟议研究的目的是联合收割机的时间预测编码与对象为中心的学习和应用所产生的模型,视频预测。这个阶段的目标是回答几个问题:以对象为中心的视频模型应该满足什么要求?这些要求如何体现在OCTPC的设计中?对象属性、瞬时属性变量、属性变量的随机时间演化以及对象间的关系应该如何表示?对象实例应该如何与对象类型不同地表示?时间预测编码机制应该如何精确地指定,以便它能够学习足够长的依赖关系?现有的以对象为中心的学习方法之间有什么共同点和差异,这些方法与这些算法的性能有什么关系?OCTPC在各种视频预测基准测试中的表现如何?哪些设计选择和超参数对性能影响最大?OCTPC的性能、行为和学习效率与非以对象为中心或不使用预测编码的模型相比如何?1第二阶段的研究旨在探索OCTPC在强化学习中的可能益处。这样做有两个主要动机。首先,强化学习有效地依赖于能够预测未来,因为最终目标是选择一个最大化预期长期未来回报的政策。使用性能视频预测模型作为基于模型的强化学习的组成部分,可以让代理更准确地预测政策的变化将如何影响未来的体验,以及如何改变政策以最大化未来的回报。第二,有一个神经科学原理,它指出“新皮层模块的处理功能在所有新皮层区域中是定性相似的......运动皮层没有内在的运动,感觉皮层也没有内在的感觉。“[13]。因此,如果发现以对象为中心的归纳偏差对视频预测有用,那么类似的归纳偏差在策略表示中也可能有用。将这种策略表示与分层强化学习中的现有工作进行比较将是有趣的[17],并探索这种表示是否可以提高强化学习中的样本效率以及对分布外环境的鲁棒性。研究方法的新奇据我们所知,将时间预测编码与以对象为中心的学习相结合以前还没有被探索过。探索这种结合将为机器学习提供有价值的贡献和见解,同时通过在算法层面上更接近人类智能的理解,为认知科学提供价值。与EPSRC的战略和研究领域一致这项研究提案与计算机智能和机器人主题,人工智能技术以及图像和视觉计算领域一致。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
User-centric Audio-Visual Scene Understanding for Augmented Reality Smart Glasses in the Wild
以用户为中心的野外增强现实智能眼镜的视听场景理解
- 批准号:
23K16912 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
WORKSHOP: Visual Languages and Human-Centric Computing (VL/HCC) 2019 Graduate Consortium
研讨会:视觉语言和以人为本的计算 (VL/HCC) 2019 年研究生联盟
- 批准号:
1926398 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
A New Expression of Three-dimensional Light Flow in Architectural Spaces and its Visual Interpretation in the Context of Human-centric Lighting Design
以人为本的照明设计背景下建筑空间三维光流的新表达及其视觉解读
- 批准号:
19KK0115 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
RI:Medium:Collaborative Research: Object-Centric Inference of Actionable Information from Visual Data
RI:中:协作研究:从视觉数据中以对象为中心推断可操作信息
- 批准号:
1763268 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
WORKSHOP: Visual Languages and Human-Centric Computing (VL/HCC) 2018 Graduate Consortium
研讨会:视觉语言和以人为本的计算 (VL/HCC) 2018 年研究生联盟
- 批准号:
1833572 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
RI:Medium:Collaborative Research: Object-Centric Inference of Actionable Information from Visual Data
RI:中:协作研究:从视觉数据中以对象为中心推断可操作信息
- 批准号:
1764078 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
WORKSHOP: Cyber Human Systems (CHS): Visual Languages and Human-Centric Computing (VL/HCC) 2017 Graduate Consortium
研讨会:网络人类系统 (CHS):视觉语言和以人为中心的计算 (VL/HCC) 2017 年研究生联盟
- 批准号:
1740926 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Active and Action-Centric Visual Understanding
职业:主动且以行动为中心的视觉理解
- 批准号:
1652052 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
WORKSHOP: Visual Languages and Human-Centric Computing Conference 2010 Doctoral Consortium: Democratizing Computational Tools
研讨会:视觉语言和以人为本的计算会议 2010 年博士联盟:计算工具民主化
- 批准号:
1032097 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Visual Languages and Human-Centric Computing Conference 2007 Doctoral Consortium: September 22-26, 2007 in Coeur d' Alene, Idaho
视觉语言和以人为中心的计算会议 2007 博士联盟:2007 年 9 月 22-26 日在爱达荷州科达伦举行
- 批准号:
0735160 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




