Methods for Dealing with Misspecification in Bayesian Experimental Design

贝叶斯实验设计中处理错误指定的方法

基本信息

  • 批准号:
    2740638
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Much of the research in statistics and machine learning has focussed on methods of analysing data once it has already been acquired, but the question of how to best collect data in the first place has been under-explored. Gathering data can be expensive, therefore practitioners are limited by the amount of data they can collect. When this is done without care, it can produce poor quality data - potentially leading to inaccurate results and incorrect conclusions, regardless of how advanced one's analytical toolkit is. It is therefore vital to endeavour to gather good quality data before analysis. Research in experimental design aims to address this issue, providing practitioners with methods of collecting informative data that will lead to reliable results and strong conclusions. To outline Bayesian experimental design (BED), we consider the following setting: there are several beacons within an area, each emitting a signal, and a practitioner wishes to locate the beacons. The data-gathering process involves the practitioner choosing locations in which to probe the signal, then recording the strength of that signal at these locations. With infinite resources, the practitioner would be able to perfectly locate the beacons, but in practice they are constrained to performing only a finite number of experiments. BED then works as follows: before collecting any data, the practitioner will first form a statistical model of the strength of the signal at a given location in terms of the unknown locations of the beacons, and they will specify their prior beliefs about the locations of the beacons with a prior distribution on these locations. BED procedures can then provide the practitioner with the best locations to probe the signal - where "best" is defined as the locations that will lead to the largest increase in information about the beacon locations. The above can be easily generalised to other settings. BED is both theoretically sound and performs well practically, however, it can break down if our statistical model of the data is misspecified, i.e., if the true data-generating process is different from the model that we specified. Bayesian statistical methodology is always vulnerable to model misspecification, but unfortunately this fact is particularly problematic for experimental design, where we are not just using our model to analyse the data, but also to collect it in the first place. In the worst case, there are models in which the optimal course of action is to pick all your designs in exactly the same place, regardless of the outcomes you observe. However, unless your model is correct, this will produce an extremely poor quality dataset.In collaboration with my supervisor, Dr Tom Rainforth, we will first aim to deepen understanding of this problem: categorising the ways in which misspecification causes BED to fail; forming metrics to diagnose this failure and best practices to avoid its occurrence; and providing theoretical guarantees for when failure will occur. Following this, we will develop methods to counteract misspecification, ideally expanding the theoretical elegance and empirical performance of BED to cases when our model is misspecified. BED has enormous potential application, including quantum information experiments, psychology trials, constructing lifelike police sketches, and guiding drug discovery. As these applications become more complex, model misspecification becomes more prevalent; it is therefore pertinent to further investigate misspecification in BED. This project falls within the EPSRC 'statistics and applied probability' research area.
统计学和机器学习领域的大部分研究都集中在数据获取后的分析方法上,但对如何最好地收集数据这一问题一直没有得到充分的探讨。收集数据的成本可能很高,因此从业者受到他们可以收集的数据量的限制。如果不小心这样做,可能会产生质量不佳的数据--无论一个人的分析工具有多先进,都可能导致不准确的结果和不正确的结论。因此,在分析之前努力收集高质量的数据是至关重要的。实验设计研究旨在解决这一问题,为从业者提供收集信息数据的方法,这些数据将导致可靠的结果和强有力的结论。为了概述贝叶斯实验设计(BED),我们考虑以下设置:在一个区域内有几个信标,每个信标都发出一个信号,从业者希望定位信标。数据收集过程包括从业者选择探测信号的位置,然后记录这些位置的信号强度。有了无限的资源,从业者将能够完美地定位信标,但在实践中,他们只能进行有限数量的实验。Bed然后工作如下:在收集任何数据之前,从业者首先根据信标的未知位置形成在给定位置的信号强度的统计模型,并且他们将用这些位置上的先验分布来指定他们对信标位置的先验信念。然后,BED程序可以为从业者提供探测信号的最佳位置--其中“最佳”被定义为将导致有关信标位置的信息增加最多的位置。以上内容可以很容易地推广到其他环境。BED在理论上是可靠的,在实践中也表现得很好,但是,如果我们错误地指定了数据的统计模型,即如果真正的数据生成过程与我们指定的模型不同,它可能会崩溃。贝叶斯统计方法总是容易受到模型错误说明的影响,但不幸的是,这一事实对于实验设计尤其成问题,在实验设计中,我们不仅使用我们的模型分析数据,而且首先收集数据。在最糟糕的情况下,有一些模型的最佳行动路线是在完全相同的地方挑选所有设计,而不管你观察到的结果如何。然而,除非你的模型是正确的,否则这将产生一个质量极差的数据集。我们将首先与我的主管汤姆·雷恩福斯博士合作,旨在加深对这个问题的理解:对错误规范导致床故障的方式进行分类;形成诊断这种故障的指标和避免其发生的最佳实践;以及为何时发生故障提供理论保证。在此之后,我们将开发出抵消错误指定的方法,理想地将BED的理论优雅和经验性能扩展到我们的模型错误指定的情况。Bed具有巨大的潜在应用,包括量子信息实验、心理学试验、构建栩栩如生的警察草图以及指导药物发现。随着这些应用变得越来越复杂,模型错误说明变得更加普遍;因此,在BED中进一步研究错误说明是有意义的。该项目属于EPSRC的统计和应用概率研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Conference: 2024 Microbial Stress Response GRC and GRS: Dealing with the Unknown: Bacterial Stress Responses Across Time and Space
会议:2024年微生物应激反应GRC和GRS:应对未知:跨时间和空间的细菌应激反应
  • 批准号:
    2420525
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dealing with distraction: understanding recovery after interruption
处理分心:了解中断后的恢复
  • 批准号:
    FT230100119
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Dealing with Evolving Constraints In Design Systems for Net Zero (DECIDE for Net Zero)
应对净零设计系统中不断变化的约束(净零决策)
  • 批准号:
    EP/X041719/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CLIMAte change citizens engagement toolbox for dealing with Societal resilience (CLIMAS)
用于处理社会复原力的气候变化公民参与工具箱 (CLIMAS)
  • 批准号:
    10064734
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Randomized controlled trial to test feasibility of a culturally adapted meditation-based support intervention for Black patients dealing with advanced cancer
随机对照试验,测试针对晚期癌症黑人患者进行基于文化的冥想支持干预的可行性
  • 批准号:
    10648212
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A machine learning approach to dealing with high-level radioactive wastes by controlling physical properties of high-temperature multiphase melt
通过控制高温多相熔体的物理性质来处理高放射性废物的机器学习方法
  • 批准号:
    23H03356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving Methods for Dealing with Missing Data in Drug Use and Addiction Research: The Use of Later-Retrieval in Ecological Momentary Assessment
改进处理药物使用和成瘾研究中缺失数据的方法:后期检索在生态瞬时评估中的应用
  • 批准号:
    10721443
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: SHF:SMALL: Compile-Parallelize-Schedule-Retarget-Repeat (EASER) Paradigm for Dealing with Extreme Heterogeneity
合作研究:SHF:SMALL:处理极端异构性的编译-并行化-调度-重定向-重复 (EASER) 范式
  • 批准号:
    2333895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: SMALL: Compile-Parallelize-Schedule-Retarget-Repeat (EASER) Paradigm for Dealing with Extreme Heterogeneity
合作研究:SHF:SMALL:处理极端异构性的编译-并行化-调度-重定向-重复(EASER)范式
  • 批准号:
    2146873
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Curriculum and Learning Environment for dealing with Difficult History
处理困难历史的课程和学习环境
  • 批准号:
    22K02537
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了