Machine learning for improved clinical decision making ahead of epilepsy surgery
机器学习可改善癫痫手术前的临床决策
基本信息
- 批准号:2741220
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Aim of the PhD Project:Automate metabolic lesion detection and segmentation on FDG-PET using normal/abnormal weakly-supervised signal decomposition Differentiating seizure-onset and seizure-spread areas Harness biological and clinical knowledge for optimised detection of relevant lesions Project description:Background: Epilepsy is the most common serious neurological condition, with >600,000 people affected in the UK (https://www.epilepsysociety.org.uk/about-epilepsy). Over 30% of people with epilepsy have medication-resistant seizures. Focal seizures start in one part of the brain, and surgery may be an option if the epileptogenic zone can be identified. Pre-surgical assessment can take >1yr and involves a range of diagnostic procedures. Imaging, particularly MRI, has a central role in this process. [18F]fluorodeoxyglucose position emission tomography (FDG-PET) is much more sensitive than MRI and particularly well developed in our Centre. Current clinical evaluation of imaging relies on time-consuming and subjective visual analysis and is challenging even for experts. Focal cortical dysplasias (FCDs) are small malformations of the brain and one of the most common substrates underlying refractory epilepsy. They can often be detected by MRI alone, but 15-30% of presurgical patients are "MRI-negative", with the proportion likely higher in national referral centres. In those, FDG-PET has become much relied upon over the past five years: it is essential to have very good localization hypotheses prior to implantation of intracranial electrodes, as these are invasive, carry a small risk, and can at best sample ~10% of brain, with seizure onset zones potentially undetected if electrodes are placed just a few mm away. Deep learning methods have gained traction for detecting and characterising abnormalities and lesions [1-3]. As they are fast once trained, they are more suitable than traditional statistical/machine learning methods [4-10] for implementation on clinical workstations. Deep learning work has exclusively focused on MRI analysis, largely ignoring the high yield of FDG-PET, especially in MRI-negative patients. One ML study has investigated FDG-PET, based on asymmetries alone and ignoring MRI [11]; another combined FDG-PET and MRI but used handcrafted features and Support Vector Machines (SVMs) / patch-based classification rather than deep learning [12]. This research will demonstrate the feasibility and usefulness of quantitative joint analysis of FDG PET and MR in the clinical setting. It will support clinicians with patient management and may enable more patients to have surgery, which could represent significant cost savings and a positive impact on patient quality of life. Goals: 1) Produce tools for quantitative analysis of FDG-PET scans of patients with epilepsy. 2) Combine with MR-based tools 3) Obtain prospective validation of the tools developed and obtain clinician feedback 4) Integrate non-imaging information into the image analysis, e.g. depression scores, EEG data, and semiology (via semantic information or ictal video-EEG directly)
博士项目的目的:使用正常/异常弱监督信号分解在FDG-PET上自动进行代谢病变检测和分割区分癫痫发作和癫痫扩散区域利用生物学和临床知识优化相关病变的检测项目描述:背景:癫痫是最常见的严重神经系统疾病,在英国有超过60万人受到影响(https://www.epilepsysociety.org.uk/about-epilepsy)。超过30%的癫痫患者有抗药性癫痫发作。局灶性癫痫发作开始于大脑的一部分,如果可以确定致痫区,手术可能是一种选择。术前评估可能需要> 1年,并涉及一系列诊断程序。影像学,尤其是MRI,在这一过程中发挥着核心作用。[18 F]氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)比MRI灵敏得多,并且在我们中心开发得特别好。目前成像的临床评价依赖于耗时和主观的视觉分析,即使对于专家来说也是具有挑战性的。局灶性皮质发育不良(FCD)是大脑的小畸形,是难治性癫痫最常见的基础之一。它们通常可以通过MRI单独检测到,但15-30%的术前患者是“MRI阴性”,在国家转诊中心的比例可能更高。在这些情况下,FDG-PET在过去五年中变得非常依赖:在植入颅内电极之前必须有非常好的定位假设,因为这些电极是侵入性的,风险很小,最多只能对约10%的大脑进行采样,如果电极放置在几mm远的地方,癫痫发作区可能无法检测到。深度学习方法已经获得了检测和表征异常和病变的牵引力[1-3]。由于它们一旦训练就很快,因此它们比传统的统计/机器学习方法更适合在临床工作站上实施。深度学习的工作主要集中在MRI分析上,在很大程度上忽略了FDG-PET的高产量,特别是在MRI阴性患者中。一项ML研究研究了FDG-PET,仅基于不对称性而忽略了MRI [11];另一项研究结合了FDG-PET和MRI,但使用了手工特征和支持向量机(SVM)/基于补丁的分类,而不是深度学习[12]。这项研究将证明在临床环境中的FDG PET和MR定量联合分析的可行性和实用性。它将支持临床医生进行患者管理,并可能使更多的患者接受手术,这可能意味着显著的成本节约和对患者生活质量的积极影响。目标:1)制作癫痫患者FDG-PET扫描定量分析工具。2)与基于MR的工具联合收割机3)获得所开发工具的前瞻性验证并获得临床医生反馈4)将非成像信息整合到图像分析中,例如抑郁评分、EEG数据和符号学(直接通过语义信息或发作视频EEG)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Smart Integration of Process Systems Engineering & Machine Learning for Improved Process Safety in Process Industries (PROSAFE)
过程系统工程智能集成
- 批准号:
EP/Y037111/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
-- - 项目类别: