Large-scale Parallel Katsevich Algorithm for 3D Cone-beam CT Image Reconstruction
3D锥束CT图像重建的大规模并行Katsevich算法
基本信息
- 批准号:7131045
- 负责人:
- 金额:$ 22.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Medical image reconstruction requires high performance computing (HPC) and high-end computing resources. They are extemely critical for practical implementation of cutting-edge technology in CT/micro-CT medical imaging. Although the recently developed algorithms are very sophisticated, they require significant time for 3-D image reconstruction. It has been a challenge for decades to find an economic and efficient parallel algorithm, and high performance computing system. The recently developed parallel Katsevich algorithm for 3D cone-beam CT image reconstruction at the University of Iowa has prompted the investigators to develop a large-scale parallel Katsevich algorithm. This algorithm will be developed and implemented for high-resolution CT/micro-CT medical image reconstructions using NSF TeraGrid system which integrates a massive number of processors. The overall goal of this proposal is to develop a specific parallel algorithm for 3-D CT/micro-CT medical image reconstruction on large scale heterogeneous systems. This parallel algorithm will allow medical researchers and/or clinical professionals to achieve high-performance for high-resolution, 3-D medical image reconstruction on a large-scale distributed computing system integrating multiple HPC clusters. The specific aims of this R21 project are to (1) develop large-scale parallel Katsevich algorithm on high performance computing systems with focuses on memory allocation, projection data decomposition, and scalability; (2) develop functions which can account for load balancing, fault-tolerance, and network impact in distributed environment; (3) compute benchmarks for evaluation of parallel performance in terms of speed-up, parallel efficiency, scalability, granularity, and network latency, using TeraGrid supercomputing resources.
描述(由申请人提供):医学图像重建需要高性能计算(HPC)和高端计算资源。它们对于CT/micro-CT医学成像中尖端技术的实际实施至关重要。虽然最近开发的算法是非常复杂的,他们需要显着的时间为3-D图像重建。寻找一种经济高效的并行算法和高性能的计算系统一直是一个挑战。爱荷华州大学最近开发的用于3D锥束CT图像重建的并行Katsevich算法促使研究人员开发大规模并行Katsevich算法。该算法将开发和实现高分辨率CT/微型CT医学图像重建使用NSF TeraGrid系统,它集成了大量的处理器。本提案的总体目标是开发一个特定的并行算法,用于大规模异构系统上的3-D CT/micro-CT医学图像重建。这种并行算法将允许医学研究人员和/或临床专业人员在集成多个HPC集群的大规模分布式计算系统上实现高性能的高分辨率、3-D医学图像重建。该R21项目的具体目标是:(1)在高性能计算系统上开发大规模并行Katsevich算法,重点关注内存分配,投影数据分解和可扩展性;(2)开发可以在分布式环境中考虑负载平衡,容错和网络影响的功能;(3)使用TeraGrid超级计算资源,从加速、并行效率、可扩展性、粒度和网络延迟等方面计算用于评估并行性能的基准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highlighting computations in bioscience and bioinformatics: review of the Symposium of Computations in Bioinformatics and Bioscience (SCBB07).
- DOI:10.1186/1471-2105-9-s6-s1
- 发表时间:2008-05-28
- 期刊:
- 影响因子:3
- 作者:Lu, Guoqing;Ni, Jun
- 通讯作者:Ni, Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Ni其他文献
Jun Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Ni', 18)}}的其他基金
相似海外基金
DATA MANAGEMENT FOR CANCER DIAGNOSIS PROGRAM ACTIVITIES
癌症诊断计划活动的数据管理
- 批准号:
10849595 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Intuitive, complete neural control of tablet computers for communication
对平板电脑进行直观、完整的神经控制以进行通信
- 批准号:
10775125 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
ShEEP Request for Sensorimotor Dynamic Response Measurement System
ShEEP 请求感觉运动动态响应测量系统
- 批准号:
10741038 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
3D Printed Configurable and Themoresponsive Intracortical Electrode Array Platform
3D 打印可配置和热响应皮质内电极阵列平台
- 批准号:
10883867 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
A ROBOT-ASSISTED PERFUSION SYSTEM TO IMPROVE PATIENT SAFETY IN THE CARDIAC OPERATING ROOM
机器人辅助灌注系统可提高心脏手术室患者的安全
- 批准号:
10442068 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Automated assessment of dyadic interaction using physiological synchrony and machine learning
使用生理同步和机器学习自动评估二元相互作用
- 批准号:
10353119 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Transfer learning to improve the re-usability of computable biomedical knowledge
迁移学习提高可计算生物医学知识的可重用性
- 批准号:
10597207 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别: