Nanoscale patterning that promotes cell adhesion

促进细胞粘附的纳米级图案

基本信息

  • 批准号:
    7140654
  • 负责人:
  • 金额:
    $ 18.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-23 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

Cell adhesion is governed by interactions of cell surface receptors with proteins found inthe extracellular matrix (ECM). Nanometer and micrometer length scales are relevant in this process, and flexible strategies to pattern cell adhesion ligands derived from ECM proteins, particularly at the micro- and nanoscale, provides tremendous opportunities to study and control cell behavior. One objective of this research is to employ ultraviolet (UV) irradiation to selectively chemically transform programmable polymer surfaces to micropattern cell adhesion peptides. A second objective is to translate the technology using low intensity electron beam (e-beam) radiation to fabricate nanopatterns of peptides. We hypothesize that micropatterns and nanopatterns of cell adhesion peptides fabricated using UV or e-beam radiation and a pH- sensitive polymer surface will promote cell adhesion. We have proposed two specific aims to reach our objectives. The first aim is to quantify osteoblast behavior on surfaces micropatterned with cell adhesion peptides. Polymer surfaces will be prepared and subsequently converted to micropatterns of amine-reactive groups using UV light, a photoacid generator (PAG), and a mask. Cell adhesion peptides will be conjugated to the surfaces. In vitro cell culture will verify that the surfaces promote osteoblast adhesion, proliferation, and differentiation. The second aim is to fabricate nanoarrays of biomolecules using pH sensitive surfaces. Nanopatterns of biomolecules will be generated using e-beam radiation. Osteoblast adhesion will be demonstrated to validate the approach. One potential outcome of this research is the development of new implant coatings that promote osseointegration. The second potential outcome is a general strategy to pattern biomolecules with nanometer resolution to study cell adhesion. The long-term goal of this research is to employ a flexible patterning technique to determine the critical sizes, shapes, and physical separations of cell adhesion ligands at the nanoscale. Such information is essential to the rational design of biomaterials and to understanding the mechanisms by which signals from the ECM are transduced to the cell interior. Relevance. Surface coatings that promote and control cell behavior can lead to better human implants and devices.
细胞黏附是由细胞表面受体与细胞外基质(ECM)中的蛋白质相互作用决定的。纳米和微米长度的尺度在这一过程中是相关的,而灵活的策略来构筑来自ECM蛋白质的细胞黏附配体,特别是在微米和纳米尺度,为研究和控制细胞行为提供了巨大的机会。这项研究的一个目标是使用紫外线(UV)照射来选择性地将可编程聚合物表面转化为微图案细胞粘附肽。第二个目标是将这项技术转化为使用低强度电子束(电子束)辐射来制造多肽纳米颗粒。我们假设,使用紫外线或电子束辐射和pH敏感的聚合物表面制备的细胞黏附肽的微图案和纳米图形将促进细胞黏附。为了实现我们的目标,我们提出了两个具体目标。第一个目标是量化成骨细胞在带有细胞黏附肽的微图案表面上的行为。将制备聚合物表面,并随后将其转化为胺反应的微图案 使用紫外光、光酸发生器(PAG)和面罩分组。细胞粘附肽将被偶联到表面。在体外细胞培养中,将证实表面促进成骨细胞的黏附、增殖和分化。第二个目标是利用pH敏感的表面来制备生物分子的纳米阵列。生物分子的纳米粒子将使用电子束辐射产生。成骨细胞的粘附性将被证明以验证该方法。这项研究的一个潜在结果是开发了促进骨整合的新型种植涂层。第二个可能的结果是一项总体战略,以 以纳米分辨率研究细胞黏附的图案化生物分子。这项研究的长期目标是使用一种灵活的图案化技术来确定纳米级细胞黏附配体的临界尺寸、形状和物理分离。这些信息对于生物材料的合理设计和理解ECM信号被传递到细胞内部的机制是必不可少的。关联性。促进和控制细胞行为的表面涂层可以带来更好的人体植入物和设备。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biomolecular nanopatterning by electrophoretic printing lithography.
通过电泳印刷光刻进行生物分子纳米图案化。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather D Maynard其他文献

Heather D Maynard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather D Maynard', 18)}}的其他基金

Stabilization of Glucagon by Trehalose Gylcopolymer Nanogels
海藻糖乙二醇聚合物纳米凝胶对胰高血糖素的稳定性
  • 批准号:
    10558471
  • 财政年份:
    2021
  • 资助金额:
    $ 18.28万
  • 项目类别:
Stabilization of Glucagon by Trehalose Gylcopolymer Nanogels
海藻糖乙二醇聚合物纳米凝胶对胰高血糖素的稳定性
  • 批准号:
    10372210
  • 财政年份:
    2021
  • 资助金额:
    $ 18.28万
  • 项目类别:
Chemistry Biology Interface Training Program
化学生物学界面培训计划
  • 批准号:
    10163884
  • 财政年份:
    2020
  • 资助金额:
    $ 18.28万
  • 项目类别:
Chemistry Biology Interface Training Program
化学生物学界面培训计划
  • 批准号:
    10413950
  • 财政年份:
    2020
  • 资助金额:
    $ 18.28万
  • 项目类别:
Trehalose Glycopolymers to Enhance both Pharmacokinetics and Stability of Therapeutic Proteins
海藻糖糖聚合物可增强治疗性蛋白质的药代动力学和稳定性
  • 批准号:
    9113714
  • 财政年份:
    2016
  • 资助金额:
    $ 18.28万
  • 项目类别:
Trehalose Glycopolymers to Enhance both Pharmacokinetics and Stability of Therapeutic Proteins
海藻糖糖聚合物可增强治疗性蛋白质的药代动力学和稳定性
  • 批准号:
    9245687
  • 财政年份:
    2016
  • 资助金额:
    $ 18.28万
  • 项目类别:
2014 Drug Carriers in Medicine and Biology Gordon Research Conference and Gordon
2014年医学和生物学药物载体戈登研究会议和戈登
  • 批准号:
    8717902
  • 财政年份:
    2014
  • 资助金额:
    $ 18.28万
  • 项目类别:
Stable and Active bFGF-Polymer Conjugates for Wound Healing
用于伤口愈合的稳定且活性强的 bFGF-聚合物缀合物
  • 批准号:
    8246214
  • 财政年份:
    2011
  • 资助金额:
    $ 18.28万
  • 项目类别:
Stable and Active bFGF-Polymer Conjugates for Wound Healing
用于伤口愈合的稳定且活性强的 bFGF-聚合物缀合物
  • 批准号:
    8588251
  • 财政年份:
    2011
  • 资助金额:
    $ 18.28万
  • 项目类别:
Stable and Active bFGF-Polymer Conjugates for Wound Healing
用于伤口愈合的稳定且活性强的 bFGF-聚合物缀合物
  • 批准号:
    8776294
  • 财政年份:
    2011
  • 资助金额:
    $ 18.28万
  • 项目类别:

相似海外基金

Nanoscale patterning that promotes cell adhesion
促进细胞粘附的纳米级图案
  • 批准号:
    7025388
  • 财政年份:
    2005
  • 资助金额:
    $ 18.28万
  • 项目类别:
STEM CELL ADHESION IN GROWTH AND TRANSDUCTION
干细胞生长和转导中的粘附
  • 批准号:
    6879595
  • 财政年份:
    2004
  • 资助金额:
    $ 18.28万
  • 项目类别:
CELL ADHESION ON PROTEIN-MICROPATTERNED LIPID BILAYERS
蛋白质微图案脂质双层上的细胞粘附
  • 批准号:
    6518905
  • 财政年份:
    2002
  • 资助金额:
    $ 18.28万
  • 项目类别:
CELL ADHESION ON PROTEIN-MICROPATTERNED LIPID BILAYERS
蛋白质微图案脂质双层上的细胞粘附
  • 批准号:
    6685579
  • 财政年份:
    2002
  • 资助金额:
    $ 18.28万
  • 项目类别:
Dynamic Substrates for Cell Adhesion & Motility Studies
用于细胞粘附的动态基质
  • 批准号:
    6640556
  • 财政年份:
    2002
  • 资助金额:
    $ 18.28万
  • 项目类别:
Dynamic Substrates for Cell Adhesion & Motility Studies
用于细胞粘附的动态基质
  • 批准号:
    6552173
  • 财政年份:
    2002
  • 资助金额:
    $ 18.28万
  • 项目类别:
CELL ADHESION ON PROTEIN-MICROPATTERNED LIPID BILAYERS
蛋白质微图案脂质双层上的细胞粘附
  • 批准号:
    6298612
  • 财政年份:
    2001
  • 资助金额:
    $ 18.28万
  • 项目类别:
STEM CELL ADHESION IN GROWTH AND TRANSDUCTION
干细胞生长和转导中的粘附
  • 批准号:
    6302308
  • 财政年份:
    2000
  • 资助金额:
    $ 18.28万
  • 项目类别:
Polymeric Matrices with Defined Cell Adhesion
具有明确细胞粘附力的聚合物基质
  • 批准号:
    6871354
  • 财政年份:
    1998
  • 资助金额:
    $ 18.28万
  • 项目类别:
Polymeric Matrices with Defined Cell Adhesion
具有明确细胞粘附力的聚合物基质
  • 批准号:
    6777972
  • 财政年份:
    1998
  • 资助金额:
    $ 18.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了