In Silico Assesment of Drug Metabolism and Toxicity

药物代谢和毒性的计算机评估

基本信息

  • 批准号:
    7100969
  • 负责人:
  • 金额:
    $ 32.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Failure of molecules in the late stages of drug development are to a large extent attributable to poor ADME/Tox properties. These properties are generally predictable in the earlier, cheaper stages of drug discovery. The goal of this work is to predict metabolism and toxicity using a computational suite called MetaDrug. This integrates human endogenous and xenobiotic metabolic as well as signalling pathways and can also incorporate gene expression, and experimental data. Under phase I, novel algorithms for predicting major CYP-mediated pathways were generated and successfully validated along with rules for predicting metabolites and reactive metabolites formed which are likely to be toxic. This algorithm development enabled the prediction of substrates and metabolites, the affinity and the rate of metabolism as well as interactions with other endogenous, metabolic and signalling pathways. With phase II funding we will develop large comprehensive datasets (>1000 molecules) for in vitro drug-drug interactions with the major CYPs, and use these for generating machine learning algorithms for these human drug metabolizing enzymes. We will also annotate rat and mouse data for drug metabolism and the transcriptional regulation of these enzymes, capturing the kinetic data which can also be used for predictive model building. We will also generate a novel algorithm for the accurate prediction of metabolites using the metabolite rules from phase I to produce a molecular fingerprint for known drugs. The database of molecules with known human metabolites will then be used as an input for a machine learning algorithm. We will combine the predictions from our various QSAR models for enzyme affinity and rate of metabolism, the relative contributions of these enzymes and their tissue distribution, to ultimately predict the clearance of a drug. The proposed work will enable GeneGo to develop a unique tool that will improve the prediction of metabolism and toxicity. These new features and database content will then be marketed to pharmaceutical companies and academia.
描述(由申请人提供):药物开发后期分子的失败在很大程度上归因于不良的ADME/Tox特性。这些特性通常在药物发现的早期,更便宜的阶段是可预测的。这项工作的目标是使用称为MetaDrug的计算套件来预测代谢和毒性。这整合了人类内源性和外源性代谢以及信号传导途径,也可以纳入基因表达和实验数据。在I期,生成了预测主要CYP介导途径的新算法,并与预测代谢物和可能有毒的反应性代谢物形成的规则一起沿着成功验证。该算法的开发使得能够预测底物和代谢物、亲和力和代谢速率以及与其他内源性、代谢和信号传导途径的相互作用。在第二阶段的资助下,我们将开发大型综合数据集(>1000个分子),用于体外药物与主要CYP的相互作用,并使用这些数据集为这些人类药物代谢酶生成机器学习算法。我们还将注释大鼠和小鼠的药物代谢数据和这些酶的转录调控,捕获动力学数据,这些数据也可用于预测模型的建立。我们还将生成一种新的算法,用于使用第一阶段的代谢物规则准确预测代谢物,以生成已知药物的分子指纹。然后,具有已知人类代谢物的分子数据库将用作机器学习算法的输入。我们将结合联合收割机从我们的各种QSAR模型的预测酶的亲和力和代谢率,这些酶的相对贡献和它们的组织分布,最终预测药物的清除率。拟议的工作将使GeneGo能够开发一种独特的工具,以改善对代谢和毒性的预测。这些新功能和数据库内容将随后向制药公司和学术界推广。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pathway mapping tools for analysis of high content data.
  • DOI:
    10.1385/1-59745-217-3:319
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ekins;Y. Nikolsky;A. Bugrim;E. Kirillov;T. Nikolskaya
  • 通讯作者:
    S. Ekins;Y. Nikolsky;A. Bugrim;E. Kirillov;T. Nikolskaya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri V. Nikolsky其他文献

Yuri V. Nikolsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuri V. Nikolsky', 18)}}的其他基金

Systems Biology Platform to Study the Influence of Nutrient Compounds on Cancer D
研究营养化合物对癌症 D 影响的系统生物学平台
  • 批准号:
    7538045
  • 财政年份:
    2008
  • 资助金额:
    $ 32.67万
  • 项目类别:
A Systems Biology Platform for Integrative Cancer Biology Research
用于综合癌症生物学研究的系统生物学平台
  • 批准号:
    7803008
  • 财政年份:
    2008
  • 资助金额:
    $ 32.67万
  • 项目类别:
Systems Biology Platform for Integrative Cancer Biology Research
用于综合癌症生物学研究的系统生物学平台
  • 批准号:
    7481677
  • 财政年份:
    2008
  • 资助金额:
    $ 32.67万
  • 项目类别:

相似海外基金

Assesment of lymphedema based on protein dynamics: Fundamental study using lymphedema model rats
基于蛋白质动力学的淋巴水肿评估:使用淋巴水肿模型大鼠的基础研究
  • 批准号:
    23K09834
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Assesment of Extreme value statistical characteristics of weather affecting the residential environment
影响居住环境的天气极值统计特征评估
  • 批准号:
    22K02098
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The development and assesment of an innovative Health and Medical Aid.
创新健康和医疗援助的开发和评估。
  • 批准号:
    10046394
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant for R&D
Lab2Market Assesment: Mobile & Cozy - an all-textile heating-assisted therapy platform for sufferers of chronic pain
Lab2Market 评估:移动
  • 批准号:
    571236-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Idea to Innovation
Developing and assessing a digital app that implements the situated assesment method to decrease distress and increase eustress
开发和评估数字应用程序,实施情境评估方法,以减少痛苦并增加良性压力
  • 批准号:
    2613929
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Studentship
Operational assesment and monitoring of pipeline operations
管道运行的运行评估和监控
  • 批准号:
    555055-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Alliance Grants
Pediatric Assesment of Rest and Exertion with MRI
通过 MRI 评估儿科休息和运动情况
  • 批准号:
    563858-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    University Undergraduate Student Research Awards
Risk assesment of sediment disasters by multispectral imagery
利用多光谱影像进行泥沙灾害风险评估
  • 批准号:
    21K18790
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Operational assesment and monitoring of pipeline operations
管道运行的运行评估和监控
  • 批准号:
    555055-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Alliance Grants
Risk Informed Safety Margin Characterization for Nuclear Reactors Using Dynamic Risk Assesment Methods
使用动态风险评估方法对核反应堆进行风险知情安全裕度表征
  • 批准号:
    522366-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了