Machine learning based electric vehicle charging management system for smart grid applications

基于机器学习的电动汽车充电管理系统,适用于智能电网应用

基本信息

  • 批准号:
    2879828
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Demand for electric vehicles (EVs) is growing rapidly, with EVs forecast to account for as much as 60% of new car sales by 2030. Growth is being driven by government policy, in line with net zero targets, increasing consumer choice and availability of supporting infrastructure. Large scale charging infrastructure scale up is required however, globally, to support EV demand growth and is forecast to require up to $1 trillion of investment by 2040. With net zero targets also driving increased renewable baseload power adoption, grids have the challenge of managing the intermittency that comes with renewable energy supply. Electric vehicle fleets provide the potential to assist grid balancing as sources of both demand (grid to vehicle (G2V)) and supply (vehicle to grid (V2G)), potentially reducing the need for grid scale energy storage. In order to manage grid balancing in this context, the ability to accurately forecast demand and supply will be crucial. AI and machine learning techniques can assist in this area to derive patterns from large scale datasets with complex relationships between variables. Also, human behavioural models are increasingly being integrated, to assist the understanding and prediction of EV owner behaviours. This project will seek to prove the hypothesis that EVs have the potential to meaningfully assist grid balancing if owners are appropriately incentivised. A key objective of the research will be to produce an AI based model that simulates EV charging and discharging activity in the context of overall electricity grid supply, demand and grid balancing strategies - the model will allow users to simulate different scenarios and gauge EV owner responses to changing conditions, including the integration of suitable human behavioural models. The project will aim to build on research to date and to understand any barriers to the large-scale involvement of EVs in grid balancing and how these may be overcome. The research has the potential to be of interest to a range of stakeholders, including grid operators, energy companies, EV companies and charging station operators. There is also the potential for the work to both learn from and be of interest to those in other fields studying the combination of AI techniques and human behavioural modelling. Research to date shows that reinforcement learning (RL) based methods are increasingly being applied to EV charging scenarios. RL has a number of benefits over conventional model-based optimisation, being more suited to the complexity, dynamism and randomness of power network modelling. The proposed approach is to obtain grid supply and demand data, along with EV usage and charging data and to develop a multi-vehicle, deep reinforcement learning model, where EV owners seek to maximise their utility within their environment, with cognitive models (such as expected utility theory and prospect theory) built into the way rewards (such as utility relating to range, cost and time) are perceived in the RL reward function. With increasing numbers of EVs on the road and increasing availability of data, there is the potential to complete a real-world study into charging behaviours, integrating the results into the workings of the RL reward function, to add realism. If the model can be developed with some realism, this will allow users to test responses to differing scenarios, with the ability to adjust a range of variables. Research to date shows that there can be novelty in advancing the level of behavioural modelling integrated into RL methods, for example by integrating cumulative prospect theory and more advanced cognitive models into the RL reward function. Also, the future grid is expected to include aerial vehicles and other forms of transport, as well as ground-based electric vehicles; research into the behavioural aspects of aerial vehicle charging has so far been limited.
电动汽车(EVS)的需求正在快速增长,预计到2030年,电动汽车将占新车销量的60%。增长是由政府政策推动的,符合净零目标,增加了消费者的选择和配套基础设施的可用性。然而,需要在全球范围内大规模扩大充电基础设施,以支持电动汽车需求增长,预计到2040年需要高达1万亿美元的投资。由于净零目标也推动了更多的可再生基本负荷电力采用,电网面临着管理可再生能源供应带来的间歇性的挑战。电动汽车车队作为需求(电网到车辆(G2V))和供应(车辆到电网(V2G))的来源,提供了帮助电网平衡的潜力,潜在地减少了对电网规模储能的需求。为了在这种情况下管理电网平衡,准确预测需求和供应的能力将是至关重要的。人工智能和机器学习技术可以帮助这一领域从变量之间具有复杂关系的大规模数据集中得出模式。此外,人类行为模型正越来越多地被整合,以帮助理解和预测电动汽车车主的行为。这个项目将寻求证明这样一个假设,即如果车主得到适当的激励,电动汽车有可能有效地帮助电网平衡。这项研究的一个关键目标将是产生一个基于人工智能的模型,在整体电网供应、需求和电网平衡战略的背景下模拟电动汽车的充放电活动-该模型将允许用户模拟不同的场景,并衡量电动汽车车主对不断变化的条件的反应,包括整合合适的人类行为模型。该项目的目标是在迄今研究的基础上,了解电动汽车大规模参与电网平衡的任何障碍,以及如何克服这些障碍。这项研究可能会引起一系列利益相关者的兴趣,包括电网运营商、能源公司、电动汽车公司和充电站运营商。这项工作也有可能向研究人工智能技术与人类行为建模相结合的其他领域的人学习,并引起他们的兴趣。到目前为止的研究表明,基于强化学习(RL)的方法正越来越多地应用于电动汽车充电场景。与传统的基于模型的优化相比,RL具有许多优点,更适合于电力网络建模的复杂性、动态性和随机性。建议的方法是获得电网供需数据,以及电动汽车的使用和充电数据,并开发一个多车辆深度强化学习模型,其中电动汽车车主寻求在其环境中最大化其效用,认知模型(如预期效用理论和前景理论)内置于RL奖励函数中感知回报的方式(如与里程、成本和时间相关的效用)。随着越来越多的电动汽车在路上行驶,数据的可用性越来越高,有可能完成对充电行为的真实世界研究,将结果整合到RL奖励功能的工作中,以增加现实感。如果该模型的开发具有一定的现实性,这将允许用户测试对不同场景的反应,并有能力调整一系列变量。到目前为止的研究表明,通过将累积前景理论和更高级的认知模型整合到RL奖励函数中,可以在提升整合到RL方法中的行为建模水平方面具有新颖性。此外,未来的电网预计将包括空中车辆和其他形式的交通工具,以及地面电动汽车;迄今为止,对空中车辆充电行为方面的研究有限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
  • 批准号:
    2317077
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
  • 批准号:
    EP/Y028252/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
  • 批准号:
    24K13482
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了