Amacrine Cell Function in the Retina

视网膜无长突细胞功能

基本信息

项目摘要

DESCRIPTION (provided by applicant): Like other CNS loci, the major mode of cellular communication in the mammalian retina is via chemically-mediated synaptic transmission. However, work over the last decade indicates that electrical synaptic transmission, via gap junctions, forms a second significant mode of neuronal interaction in the retina. It is now clear that gap junctions are ubiquitous throughout the retina, occurring between cells within each of the five major cell classes. In addition, retinal gap junctions have been shown to be dynamically regulated by changes in ambient illumination and circadian rhythms acting through light-activated neuromodulators such as dopamine and nitric oxide. These data suggest that gap junctions play a key role in light adaptation. The networks formed by electrically coupled retinal neurons thus provide plastic, reconfigurable circuits for the flow of visual signals. Overall, direct intercellular communication via electrical coupling is positioned to play key and diverse roles in the transmission and integration of visual information at every retinal level. The long-term goal of this research is to define the distribution, function and regulation of the gap junctions in the mammalian retina so as to understand their roles in the transmission of visual information. Accordingly, the specific aims of this proposal include: (1) to determine the roles of the different gap junctions that form crucial elements in the different rod pathways; (2) to determine the roles of ganglion-to-ganglion cell and ganglion-to-amacrine cell electrical coupling in the synchronization of the spike activity of neighboring alpha ganglion cells and whether this is regulated by light; and (3) to elucidate the different subtypes of amacrine and ganglion cells that form distinct and stereotypic coupled networks in the proximal mammalian retina. A final aim is to define the structure and function of amacrine cell types, long a focus of the work in our lab, to provide a framework to understand the role of their electrical junctions. The functions of gap junctions will be assayed electrophysiologically by recording from retinal neurons under conditions in which gap junctions are disrupted either pharamcologically or in a connexin36 knockout mouse model. In addition, the biotinylated tracer Neurobiotin, which can pass through gap junctions, will be used to morphologically assay changes in the extent of coupling so as to determine how it is regulated by light or disrupted in the experimental models. Gap junctions have been implicated in a number of neurological diseases including X-linked Charcot-Marie-Tooth disease, nonsyndromic autosomal deafness as well as having a role in neuroprotection and cell loss following stroke or trauma. Although focused on the function and regulation of gap junctions in the mammalian retina, the proposed work should nevertheless provide important insights into the roles and plasticity of gap junctions throughout the brain.
描述(由申请人提供):与其他CNS基因座一样,哺乳动物视网膜中细胞通讯的主要模式是通过化学介导的突触传递。然而,过去十年的工作表明,通过间隙连接的电突触传递形成视网膜中神经元相互作用的第二种重要模式。现在很清楚,缝隙连接在整个视网膜中无处不在,发生在五种主要细胞类别中的每一种细胞之间。此外,视网膜缝隙连接已被证明是动态调节的环境照明和昼夜节律的变化,通过光激活的神经调节剂,如多巴胺和一氧化氮的作用。这些数据表明,缝隙连接在光适应中起着关键作用。因此,由电耦合的视网膜神经元形成的网络为视觉信号的流动提供了可塑的、可重新配置的电路。总的来说,通过电耦合的直接细胞间通信被定位为在每个视网膜水平的视觉信息的传输和整合中发挥关键和不同的作用。本研究的长期目标是明确差距连接在哺乳动物视网膜中的分布、功能和调控,以了解其在视觉信息传递中的作用。因此,本发明的具体目的包括:(1)确定在不同视杆细胞通路中形成关键元件的不同缝隙连接的作用;(2)确定神经节-神经节细胞和神经节-无长突细胞电耦合在相邻α神经节细胞的锋电位活动的同步化中的作用,以及这是否受光调节;和(3)阐明在近端哺乳动物视网膜中形成独特和刻板耦合网络的无长突细胞和神经节细胞的不同亚型。最后一个目标是定义无长突细胞类型的结构和功能,这是我们实验室长期以来的工作重点,为理解其电连接的作用提供了一个框架。通过记录视网膜神经元,在药理学或连接蛋白36敲除小鼠模型中破坏间隙连接的条件下,电生理学测定间隙连接的功能。此外,生物素化的示踪剂神经生物素,它可以通过间隙连接,将用于形态学分析耦合程度的变化,以确定它是如何被光调节或破坏的实验模型。缝隙连接与许多神经系统疾病有关,包括X连锁Charcot-Marie-Tooth病,非综合征性常染色体耳聋以及在中风或创伤后的神经保护和细胞丢失中发挥作用。虽然集中在哺乳动物视网膜的间隙连接的功能和调节,拟议的工作仍然应该提供重要的见解,在整个大脑的间隙连接的作用和可塑性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stewart Allen Bloomfield其他文献

Stewart Allen Bloomfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stewart Allen Bloomfield', 18)}}的其他基金

The Role of Gap Junctions in the Progressive Loss of Retinal Neurons in Glaucoma
间隙连接在青光眼视网膜神经元逐渐丧失中的作用
  • 批准号:
    9212812
  • 财政年份:
    2016
  • 资助金额:
    $ 48.74万
  • 项目类别:
Short-term Training of Students in Health Professional Schools
卫生专业学校学生短期培训
  • 批准号:
    9195095
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
Short-term Training of Students in Health Professional Schools
卫生专业学校学生短期培训
  • 批准号:
    9001334
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
Training Program in Neuroscience
神经科学培训计划
  • 批准号:
    7868557
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
Training Program in Neuroscience
神经科学培训计划
  • 批准号:
    8089316
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
Short-Term Training of Students in Health Professional Schools
卫生专业学校学生短期培训
  • 批准号:
    10613556
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
Short-Term Training of Students in Health Professional Schools
卫生专业学校学生短期培训
  • 批准号:
    10404943
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
Training Program in Neuroscience
神经科学培训计划
  • 批准号:
    8134638
  • 财政年份:
    2010
  • 资助金额:
    $ 48.74万
  • 项目类别:
AMACRINE CELL FUNCTION IN THE RETINA
视网膜中的无精细胞功能
  • 批准号:
    2161472
  • 财政年份:
    1988
  • 资助金额:
    $ 48.74万
  • 项目类别:
Amacrine Cell Function in the Retina
视网膜无长突细胞功能
  • 批准号:
    6710054
  • 财政年份:
    1988
  • 资助金额:
    $ 48.74万
  • 项目类别:

相似国自然基金

具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
  • 批准号:
    22007039
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
  • 批准号:
    21372217
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
  • 批准号:
    21172061
  • 批准年份:
    2011
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
  • 批准号:
    21176225
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
  • 批准号:
    81072511
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
  • 批准号:
    30660215
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
  • 批准号:
    2338857
  • 财政年份:
    2024
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Continuing Grant
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
  • 批准号:
    502577
  • 财政年份:
    2024
  • 资助金额:
    $ 48.74万
  • 项目类别:
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Continuing Grant
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
  • 批准号:
    23H02086
  • 财政年份:
    2023
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
  • 批准号:
    477891
  • 财政年份:
    2023
  • 资助金额:
    $ 48.74万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了