Graph Neural Networks for Anomaly Detection in Multivariate time-series datasets
用于多元时间序列数据集中异常检测的图神经网络
基本信息
- 批准号:2892581
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Anomalies are integral part of almost every system including manufacturing process. It can cause system fault, delay the manufacturing process, waste of resources and time. One of the key challenges in anomaly detection include defining the precise boundaries between normal/abnormal data points multivariate time series data. The state-of-the-art methods do not explicitly learn the structure of existing relationships, which limits the applicability in many real-world applications. In recent years, deep learning-based graph neural networks have emerged as a successful approach for modelling complex patterns in graph-structured data. The goal of this research is to design and developed the graph neural networks for anomalies detection in manufacturing process. The developed model will be able to identify potential anomalies within the manufacturing data when looking at the graph view of the wafer timelines. The following objectives are set to be achieved during the Ph.D. duration.1. A novel graph neural networks to detect anomalies for multivariate time-series data of manufacturing process.2. Evaluate the proposed approach on the provided commercial graph datasets and comparison with the existing state-of-the-art methods.3. Visualization of the output in a human understandable format.The developed approach will be applied to the area of nano-manufacturing to identify potential issues and defects within the manufacturing process based on a knowledge-graph. It will consider the generated event stream to capture the processes and events created during the construction of a semiconductor wafer. Using these techniques in production will reduce the amount of time that process engineers spend collecting and analysing data for potential issues with wafers as well as being able to provide advanced notification to anomalies within the manufacturing processes which are not easily identified by process engineers looking at single wafer timelines or process steps. The graph neural networks are expected to outperform to solve anomaly detection problem because of its inherent nature of structural relationship association with the data. The outcome of such research can be applied into (a) food-supply chain to detect the anomalies for food security, (b) transportation, and (c) energy consumption patterns in commercial/residential buildings to reduce the energy wastage and contribute to support the mission of climate change.
异常是几乎每个系统的组成部分,包括制造过程。它会导致系统故障,延迟制造过程,浪费资源和时间。异常检测中的一个关键挑战是定义多变量时间序列数据中正常/异常数据点之间的精确边界。最先进的方法没有明确地学习现有关系的结构,这限制了在许多现实世界的应用程序中的适用性。近年来,基于深度学习的图神经网络已经成为一种成功的方法,用于对图结构数据中的复杂模式进行建模。本研究的目的是设计与发展图类神经网路,以应用于制造过程的异常侦测。当查看晶圆时间线的图形视图时,开发的模型将能够识别制造数据中的潜在异常。以下目标将在博士期间实现。持续时间。提出了一种新的图神经网络用于制造过程多变量时间序列数据的异常检测.在提供的商业图数据集上评估所提出的方法,并与现有的最先进的方法进行比较。可视化的输出在一个人可以理解的格式。开发的方法将被应用到纳米制造领域,以确定潜在的问题和缺陷的基础上的知识图的制造过程中。它将考虑生成的事件流来捕获在半导体晶片的构造期间创建的过程和事件。在生产中使用这些技术将减少工艺工程师收集和分析晶圆潜在问题数据的时间,并能够对制造过程中的异常情况提供提前通知,这些异常情况不容易被工艺工程师通过查看单晶片时间表或工艺步骤识别。图神经网络由于其与数据的结构关联的固有性质,有望在解决异常检测问题方面表现出色。这些研究的结果可以应用于(a)食品供应链,以检测食品安全的异常,(B)运输,以及(c)商业/住宅建筑的能源消耗模式,以减少能源浪费,并有助于支持气候变化的使命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
- 批准号:
24K20787 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
III: Small: 3D Graph Neural Networks: Completeness, Efficiency, and Applications
III:小:3D 图神经网络:完整性、效率和应用
- 批准号:
2243850 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
- 批准号:
2241713 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Graph Neural Networks for High Energy Physics
高能物理的图神经网络
- 批准号:
2869973 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Towards Responsible Graph Neural Networks
职业:迈向负责任的图神经网络
- 批准号:
2238616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant