Using existing data to optimise adaptive intervention in epilepsy
利用现有数据优化癫痫的适应性干预
基本信息
- 批准号:2896498
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Approximately half of patients with newly diagnosed epilepsy who start antiepileptic drug (AED) monotherapy fail on their first treatment, after which the clinician and patient will discuss the likely overall prognosis and decide on the next AED to start. Failure on the second AED may lead to further substitution of AED as monotherapy, or the addition of further AEDs as polytherapy, with the potential for a large number of alternative treatment sequences and possible adaptations. The probability of achieving seizure control reduces with every failed AED and approximately 30% of patients will have a drug-resistant form of epilepsy. Traditionally trial designs for epilepsy focus on randomising newly diagnosed patients or drug-resistant patients as separate populations, and there is a dearth of evidence to support adaptive treatment decisions between these two points in an individual patient's pathway.The Sequential Multiple Assignment Randomised Trial (SMART) is an innovative clinical trial design, to provide high-quality data that can be used to inform the development of adaptive interventions across the pathway. A SMART involves multiple intervention stages where each stage corresponds to one of the critical decisions involved in the adaptive intervention and randomises participants at each state. Although such a SMART trial would be the gold standard for causal inference, the approach would be expensive and lengthy. Utilising existing real-world data by applying analytic techniques to emulate a SMART target trial could be an efficient use of currently available data and evidence. Personalising optimal pathways may also be possible by incorporating data about patient characteristics where this is available.The aim is to establish how real-world evidence can be used to optimise treatment decisions for patients with epilepsy and inform the design of a future SMART trial. Specific aims include:1. Summarise the evidence for treatment decisions following treatment failure.2. Identify risk factors for outcome following treatment failure in patients with epilepsy 3. Evaluate how previous SMART trials have used existing evidence in their design and analysis4. Implement an analytic approach that emulates a target SMART trial of AED treatments using existing real-world data 5. Design a SMART trial to explore the most promising treatment sequences in epilepsy incorporating existing evidence
大约一半的新诊断癫痫患者在开始抗癫痫药物(AED)单药治疗后第一次治疗失败,之后临床医生和患者将讨论可能的总体预后并决定下一次开始使用AED。第二种AED治疗失败可能导致进一步替代AED作为单一治疗,或增加进一步的AED作为综合治疗,有可能出现大量替代治疗序列和可能的适应。每次AED失败,实现癫痫控制的可能性就会降低,大约30%的患者会出现耐药性癫痫。传统的癫痫试验设计侧重于将新诊断的患者或耐药患者作为单独的人群随机分配,并且缺乏证据支持个体患者途径中这两点之间的适应性治疗决策。顺序多任务随机试验(SMART)是一项创新的临床试验设计,提供高质量的数据,可用于通知整个途径的适应性干预措施的发展。SMART包括多个干预阶段,每个阶段对应于自适应干预中涉及的一个关键决策,并随机分配每个状态的参与者。尽管这样一个聪明的试验将是因果推理的黄金标准,但这种方法将是昂贵和漫长的。通过应用分析技术来模拟SMART目标试验,利用现有的真实世界数据可以有效地利用当前可用的数据和证据。个性化的最佳路径也可能通过合并患者特征的数据,这是可行的。目的是确定如何使用真实世界的证据来优化癫痫患者的治疗决策,并为未来SMART试验的设计提供信息。具体目标包括:1。总结治疗失败后治疗决策的证据。确定癫痫患者治疗失败后预后的危险因素评估以前的SMART试验在设计和分析中是如何使用现有证据的。实施一种分析方法,利用现有的现实世界数据模拟AED治疗的目标SMART试验5。设计一项SMART试验,结合现有证据,探索最有希望的癫痫治疗方案
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
An assessment of low-temperature, ductile lithospheric deformation using existing broadband seismic data from around South Island, New Zealand
使用新西兰南岛周围现有的宽带地震数据评估低温、延性岩石圈变形
- 批准号:
2316757 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Strengthening implementation science in Acute Respiratory Failure using multilevel analysis of existing data
利用现有数据的多级分析加强急性呼吸衰竭的实施科学
- 批准号:
10731311 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing and Testing Quality Indicators for Children and Youth Mental Health Using Existing Data
利用现有数据制定和测试儿童和青少年心理健康质量指标
- 批准号:
488210 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Identifying existing, FDA-approved drugs with clinically protective effects against coronavirus disease 2019 using a big data approach
使用大数据方法识别 FDA 批准的现有药物,对 2019 年冠状病毒病具有临床保护作用
- 批准号:
10395043 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Identifying existing, FDA-approved drugs with clinically protective effects against coronavirus disease 2019 using a big data approach
使用大数据方法识别 FDA 批准的现有药物,对 2019 年冠状病毒病具有临床保护作用
- 批准号:
10195454 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multi-center observational study of the relationship of ventilation and outcomes from cardiac arrest using existing data
使用现有数据对通气与心脏骤停结果之间的关系进行多中心观察研究
- 批准号:
10330007 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multi-center observational study of the relationship of ventilation and outcomes from cardiac arrest using existing data
使用现有数据对通气与心脏骤停结果之间的关系进行多中心观察研究
- 批准号:
10113332 - 财政年份:2021
- 资助金额:
-- - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10331850 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Identifying existing, FDA-approved drugs with clinically protective effects against coronavirus disease 2019 using a big data approach
使用大数据方法识别 FDA 批准的现有药物,对 2019 年冠状病毒病具有临床保护作用
- 批准号:
10380869 - 财政年份:2021
- 资助金额:
-- - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10115365 - 财政年份:2021
- 资助金额:
-- - 项目类别:














{{item.name}}会员




