A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
基本信息
- 批准号:10331850
- 负责人:
- 金额:$ 11.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-22 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Abdominal Aortic AneurysmAddressAdoptedAdverse eventAneurysmAnnual ReportsAortaBiomechanicsCaliberCause of DeathCessation of lifeClassificationClinicalClinical DataClinical TrialsComputer ModelsComputer softwareDataData ReportingData SetDatabasesDiagnosisDilatation - actionDimensionsDiseaseEventEvolutionFailureFinite Element AnalysisFundingGeometryGuidelinesHealthImageIndividualInterventionLeftLightLinkMachine LearningMethodologyMethodsModelingMorphologyPatient-Focused OutcomesPatientsPharmacological TreatmentPrincipal Component AnalysisPrognosisRelative RisksResearchRiskRisk AssessmentRuptureRuptured Abdominal Aortic AneurysmSeveritiesSpecificityStatistical MethodsTechniquesTestingThinnessTimeTrainingUnited StatesUnited States National Institutes of HealthValidationWorkX-Ray Computed Tomographybasebiomechanical testclinical decision supportclinical prognosiscohortdesignexperiencefeature selectionfollow-upimaging studyimprovedindexinginnovationmachine learning algorithmmachine learning classificationmortalitynovelpatient prognosispredictive modelingrate of changerepairedscreeningserial imagingsupport toolstheoriestool
项目摘要
SUMMARY: A Machine Learning-Based Clinical Decision Support Tool to Predict AAA Prognosis
Abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta. If left untreated AAA may
go on to rupture, an occurrence which has a 90% mortality rate and is the 13th leading cause of
death in the United States, with more than 15,000 annual deaths reported annually. After AAA is
diagnosed, a clinician must determine its severity; i.e., the relative risk of rupture compared to the risk
of intervention. Current clinical guidelines for this determination is based on the one-size-fits-all
“maximum diameter criterion”, which states that when a AAA reaches 5.5 cm in diameter, the risk of
rupture necessitates repair of the aneurysm. However, smaller sized AAAs (< 5.5 cm) have been
seen to rupture at rates of up to 23.4%, demonstrating that this diameter-based criterion is unsuitable
for AAA management. A recently completed NIH-funded clinical trial, 1U01-AG037120: “Non-Invasive
Treatment of AAA Clinical Trial” (N-TA3CT) was designed to demonstrate the efficacy of
pharmacologic treatment of small AAA. During this trial, a highly unique and valuable dataset was
collected longitudinally every 6 months for a 3-year period for patients presenting with small AAA.
This proposal is designed to test the hypothesis that, at the time of discovery of small AAA,
clinical prognosis – i.e., predicting if and when clinical intervention will be required based on rupture
risk metrics – can be facilitated using machine learning-based algorithms using real-time
biomechanical, morphological, and clinical data. To address this hypothesis, we will pursue two
specific aims.
Aim 1 will be to quantify the “evolution” of individual small AAA from the N-TA3CT trial. The
biomechanical and morphological status of all patient AAAs at each timepoint will be determined from
data collected during the trial using finite element analysis and morphometric analysis, respectively,
and these will be tabulated along with clinical indices for each AAA at each timepoint.
Aim 2 will be to develop and validate machine learning and regression techniques to forecast the
clinical prognosis of small AAA. The data from Aim 1 as well as follow-up reporting data from the N-
TA3CT trial will be used to train machine learning classification models to determine whether
aneurysm prognosis can be accurately predicted. Validation will be performed on a subset of data to
assess the accuracy, sensitivity, precision and specificity of the proposed prediction model.
The unique dataset from the N-TA3CT trial, paired with the extensive experience of and methods
developed by our lab, will allow us, for the first time, to carefully examine and quantify the natural
evolution of small AAA and to subsequently develop a predictive model to improve patient prognosis.
摘要:基于机器学习的临床决策支持工具来预测 AAA 预后
腹主动脉瘤(AAA)是主动脉的局部扩张。 If left untreated AAA may
继续破裂,这种情况的死亡率为 90%,是导致破裂的第 13 位。
美国每年报告的死亡人数超过 15,000 人。 After AAA is
确诊后,临床医生必须确定其严重程度;即破裂的相对风险与风险相比
of intervention.目前这一决定的临床指南是基于一刀切的标准
“最大直径标准”,规定当 AAA 直径达到 5.5 厘米时,发生
rupture necessitates repair of the aneurysm. However, smaller sized AAAs (< 5.5 cm) have been
破裂率高达 23.4%,表明这种基于直径的标准是不合适的
for AAA management.最近完成的一项由 NIH 资助的临床试验 1U01-AG037120:“非侵入性
AAA 治疗临床试验(N-TA3CT)旨在证明治疗的有效性
pharmacologic treatment of small AAA.在此试验期间,获得了一个非常独特且有价值的数据集
对于患有小 AAA 的患者,每 6 个月纵向收集一次,为期 3 年。
该提案旨在检验以下假设:在发现小型 AAA 时,
临床预后——即根据破裂情况预测是否以及何时需要临床干预
风险指标——可以使用基于机器学习的实时算法来促进
biomechanical, morphological, and clinical data. To address this hypothesis, we will pursue two
具体目标。
目标 1 是量化 N-TA3CT 试验中个体小 AAA 的“进化”。这
每个时间点所有患者 AAA 的生物力学和形态学状态将根据
试验期间分别使用有限元分析和形态分析收集的数据,
这些将与每个 AAA 在每个时间点的临床指数一起制成表格。
目标 2 是开发和验证机器学习和回归技术来预测
小AAA的临床预后。来自目标 1 的数据以及来自 N- 的后续报告数据
TA3CT试验将用于训练机器学习分类模型以确定是否
可以准确预测动脉瘤的预后。将对数据子集进行验证
评估所提出的预测模型的准确性、敏感性、精密度和特异性。
N-TA3CT 试验的独特数据集,搭配丰富的经验和方法
由我们实验室开发的,将使我们第一次能够仔细检查和量化自然
小 AAA 的演变,并随后开发预测模型以改善患者预后。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Alan Vorp其他文献
Finite element modelling and analyses of nonlinearly elastic, orthotropic, vascular tissue in distension
- DOI:
10.1007/bf02368653 - 发表时间:
1993-11-01 - 期刊:
- 影响因子:5.400
- 作者:
David Alan Vorp - 通讯作者:
David Alan Vorp
David Alan Vorp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Alan Vorp', 18)}}的其他基金
Biomechanics in Regenerative Medicine (BiRM) Training Program
再生医学生物力学 (BiRM) 培训计划
- 批准号:
10628407 - 财政年份:2023
- 资助金额:
$ 11.83万 - 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
- 批准号:
10115365 - 财政年份:2021
- 资助金额:
$ 11.83万 - 项目类别:
The Role of Fibrinolysis in Tissue Engineered Vascular Grafts for Aged Individuals
纤溶在老年人组织工程血管移植中的作用
- 批准号:
9979086 - 财政年份:2020
- 资助金额:
$ 11.83万 - 项目类别:
Preclinical optimization and design for manufacturability of immunoregulatory tissue-engineered vascular grafts
免疫调节组织工程血管移植物可制造性的临床前优化和设计
- 批准号:
10054024 - 财政年份:2020
- 资助金额:
$ 11.83万 - 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
- 批准号:
9175164 - 财政年份:2016
- 资助金额:
$ 11.83万 - 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
- 批准号:
9276786 - 财政年份:2016
- 资助金额:
$ 11.83万 - 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
- 批准号:
9015874 - 财政年份:2016
- 资助金额:
$ 11.83万 - 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
- 批准号:
9260065 - 财政年份:2016
- 资助金额:
$ 11.83万 - 项目类别:
Autologous Stem Cell-Based Tissue Engineered Vascular Grafts
基于自体干细胞的组织工程血管移植物
- 批准号:
8426531 - 财政年份:2013
- 资助金额:
$ 11.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 11.83万 - 项目类别:
Research Grant














{{item.name}}会员




