A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data

基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后

基本信息

  • 批准号:
    10115365
  • 负责人:
  • 金额:
    $ 11.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-22 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

SUMMARY: A Machine Learning-Based Clinical Decision Support Tool to Predict AAA Prognosis Abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta. If left untreated AAA may go on to rupture, an occurrence which has a 90% mortality rate and is the 13th leading cause of death in the United States, with more than 15,000 annual deaths reported annually. After AAA is diagnosed, a clinician must determine its severity; i.e., the relative risk of rupture compared to the risk of intervention. Current clinical guidelines for this determination is based on the one-size-fits-all “maximum diameter criterion”, which states that when a AAA reaches 5.5 cm in diameter, the risk of rupture necessitates repair of the aneurysm. However, smaller sized AAAs (< 5.5 cm) have been seen to rupture at rates of up to 23.4%, demonstrating that this diameter-based criterion is unsuitable for AAA management. A recently completed NIH-funded clinical trial, 1U01-AG037120: “Non-Invasive Treatment of AAA Clinical Trial” (N-TA3CT) was designed to demonstrate the efficacy of pharmacologic treatment of small AAA. During this trial, a highly unique and valuable dataset was collected longitudinally every 6 months for a 3-year period for patients presenting with small AAA. This proposal is designed to test the hypothesis that, at the time of discovery of small AAA, clinical prognosis – i.e., predicting if and when clinical intervention will be required based on rupture risk metrics – can be facilitated using machine learning-based algorithms using real-time biomechanical, morphological, and clinical data. To address this hypothesis, we will pursue two specific aims. Aim 1 will be to quantify the “evolution” of individual small AAA from the N-TA3CT trial. The biomechanical and morphological status of all patient AAAs at each timepoint will be determined from data collected during the trial using finite element analysis and morphometric analysis, respectively, and these will be tabulated along with clinical indices for each AAA at each timepoint. Aim 2 will be to develop and validate machine learning and regression techniques to forecast the clinical prognosis of small AAA. The data from Aim 1 as well as follow-up reporting data from the N- TA3CT trial will be used to train machine learning classification models to determine whether aneurysm prognosis can be accurately predicted. Validation will be performed on a subset of data to assess the accuracy, sensitivity, precision and specificity of the proposed prediction model. The unique dataset from the N-TA3CT trial, paired with the extensive experience of and methods developed by our lab, will allow us, for the first time, to carefully examine and quantify the natural evolution of small AAA and to subsequently develop a predictive model to improve patient prognosis.
总结:基于机器学习的临床决策支持工具,用于预测AAA预后 腹主动脉瘤(AAA)是一种局部扩张的主动脉。如果不治疗,AAA可能 继续破裂,这种情况的死亡率为90%,是第13大主要原因。 在美国,每年报告的死亡人数超过15,000人。在AAA之后, 诊断后,临床医生必须确定其严重性;即,破裂的相对风险与 干预。目前的临床指南,这一决定是基于一个尺寸适合所有 “最大直径标准”,规定当AAA直径达到5.5 cm时, 破裂需要修复动脉瘤。然而,较小尺寸的AAA(< 5.5 cm)已被 断裂率高达23.4%,表明这种基于直径的标准是不合适的 AAA管理。最近完成的一项由NIH资助的临床试验,1U 01-AG 037120:“非侵入性 AAA治疗临床试验”(N-TA 3CT)旨在证明 小AAA的药物治疗。在这次试验中,一个非常独特和有价值的数据集, 每6个月纵向收集一次小AAA患者的数据,持续3年。 该提议旨在检验以下假设:在发现小AAA时, 临床预后-即,根据破裂预测是否以及何时需要临床干预 风险度量-可以使用基于机器学习的算法, 生物力学、形态学和临床数据。为了解决这一假设,我们将追求两个 明确的目标。 目的1是量化N-TA 3CT试验中个体小型AAA的“演变”。的 每个时间点所有患者AAA的生物力学和形态学状态将根据 分别使用有限元分析和形态测量分析在试验期间收集的数据, 这些将与每个时间点每个AAA的临床指数一起沿着。 目标2将是开发和验证机器学习和回归技术,以预测 小AAA的临床预后。来自目标1的数据以及来自N- TA 3CT试验将用于训练机器学习分类模型,以确定是否 可以准确预测动脉瘤预后。将对数据子集进行验证, 评估建议的预测模式的准确性、灵敏度、精确度和特异性。 来自N-TA 3CT试验的独特数据集,结合广泛的经验和方法, 由我们实验室开发的,将使我们能够,第一次,仔细检查和量化自然 小AAA的演变,并随后开发预测模型以改善患者预后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Alan Vorp其他文献

Finite element modelling and analyses of nonlinearly elastic, orthotropic, vascular tissue in distension
  • DOI:
    10.1007/bf02368653
  • 发表时间:
    1993-11-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    David Alan Vorp
  • 通讯作者:
    David Alan Vorp

David Alan Vorp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Alan Vorp', 18)}}的其他基金

Biomechanics in Regenerative Medicine (BiRM) Training Program
再生医学生物力学 (BiRM) 培训计划
  • 批准号:
    10628407
  • 财政年份:
    2023
  • 资助金额:
    $ 11.74万
  • 项目类别:
A Machine Learning-Based Clinical Decision Support Tool to Predict Abdominal Aortic Aneurysm Prognosis Using Existing Longitudinal Data
基于机器学习的临床决策支持工具,利用现有纵向数据预测腹主动脉瘤预后
  • 批准号:
    10331850
  • 财政年份:
    2021
  • 资助金额:
    $ 11.74万
  • 项目类别:
The Role of Fibrinolysis in Tissue Engineered Vascular Grafts for Aged Individuals
纤溶在老年人组织工程血管移植中的作用
  • 批准号:
    9979086
  • 财政年份:
    2020
  • 资助金额:
    $ 11.74万
  • 项目类别:
Preclinical optimization and design for manufacturability of immunoregulatory tissue-engineered vascular grafts
免疫调节组织工程血管移植物可制造性的临床前优化和设计
  • 批准号:
    10054024
  • 财政年份:
    2020
  • 资助金额:
    $ 11.74万
  • 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
  • 批准号:
    9175164
  • 财政年份:
    2016
  • 资助金额:
    $ 11.74万
  • 项目类别:
Artificial Stem Cells for Vascular Tissue Engineering
用于血管组织工程的人工干细胞
  • 批准号:
    9276786
  • 财政年份:
    2016
  • 资助金额:
    $ 11.74万
  • 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
  • 批准号:
    9015874
  • 财政年份:
    2016
  • 资助金额:
    $ 11.74万
  • 项目类别:
An Autologous, Culture-Free, Adipose Cell-Based Tissue Engineered Vascular Graft
一种自体、无培养、基于脂肪细胞的组织工程血管移植物
  • 批准号:
    9260065
  • 财政年份:
    2016
  • 资助金额:
    $ 11.74万
  • 项目类别:
Autologous Stem Cell-Based Tissue Engineered Vascular Grafts
基于自体干细胞的组织工程血管移植物
  • 批准号:
    8426531
  • 财政年份:
    2013
  • 资助金额:
    $ 11.74万
  • 项目类别:
2011 Summer Bioengineering Conference
2011年夏季生物工程会议
  • 批准号:
    8201445
  • 财政年份:
    2011
  • 资助金额:
    $ 11.74万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.74万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了