Micofabricated Cantilever-Based Scanner for forward-looking 3D Endoscopic Optical

用于前瞻 3D 内窥镜光学的微制造悬臂扫描仪

基本信息

  • 批准号:
    7296467
  • 负责人:
  • 金额:
    $ 23.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project aims at the development of a novel two-dimensional optical scanner to enable endoscopic forward-looking 3D Optical Coherence Tomography. Endoscopic OCT (EOCT) provides the potential for minimally invasive diagnostics by "optical biopsy" consisting of tomographic sub-surface imaging in situ in a variety of tissues. Catheter-based EOCT is performed by delivering the light beam through a catheter placed inside an endoscope. Catheter OCT probes have been developed using a side-looking geometry, which is appropriate for imaging narrow-lumen vessels. A forward-looking probe would greatly enhance the ability of imaging mucosa of large or hollow organs such as stomach, colon, and bladder, but the implementation is complicated by the catheter size constraints. Approaches to achieve forwardlooking EOCT have been reported and typically offer uni-dimensional scanning due to the difficulty of inserting a two-dimensional optical scanner within the small catheter diameter (2.9 mm). Given a catheter-integrated, two-dimensional optical scanner, high resolution 3D EOCT imaging can be obtained using longitudinal dimension scanning with the reference beam located outside the endoscope. This imaging approach will allow accurate non-invasive diagnoses of cancers and other pathologies limited in depth of penetration to epithelial or near sub-epithelial layers. The novel design for the two-dimensional optical scanner proposed here is based on microfabricated cantilevers. Static deflection and resonance frequency calculations indicate that, for a reasonable set of parameters, the proposed scheme provides a size and power consumption advantage over the competing approaches and excellent scanning range and speed performance. This project is focused on the microfabrication and characterization of a two-dimensional scanner optimized for catheter OCT imaging. The microfabrication processing steps will be designed to include a range of parameters selected based on the calculated effects of actuator geometry and film thicknesses on scanning performance. The mechanical and optical properties of the devices will be characterized with a suite of available measurement tools. A detailed optical simulation of the EOCT system will be performed based on actual performance of the optical scanner. Optimized devices will be integrated with suitable optical components and incorporated into a high-speed Fourier-Domain OCT scanner to assess image quality.
描述(由申请人提供):本项目旨在开发一种新型二维光学扫描仪,以实现内窥镜前视三维光学相干断层扫描。内窥镜OCT(EOCT)通过在各种组织中原位进行断层扫描亚表面成像的“光学活检”提供了微创诊断的可能性。基于导管的EOCT是通过将光束输送通过放置在内窥镜内的导管来执行的。导管OCT探头是使用侧视几何结构开发的,适用于窄腔血管成像。前视探头将极大地增强对诸如胃、结肠和膀胱的大的或中空的器官的粘膜成像的能力,但是由于导管尺寸的限制,实现方式是复杂的。已经报告了实现前瞻性EOCT的方法,并且由于难以在小导管直径(2.9 mm)内插入二维光学扫描仪,通常提供一维扫描。给定导管集成的二维光学扫描仪,可以使用纵向尺寸扫描来获得高分辨率3D EOCT成像,其中参考光束位于内窥镜外部。这种成像方法将允许对癌症和其他病变进行准确的非侵入性诊断,这些疾病的穿透深度限于上皮层或近上皮层。 本文提出的二维光学扫描器的新设计是基于微加工的悬臂梁。静态偏转和共振频率计算表明,对于一组合理的参数,所提出的方案提供了一个尺寸和功耗优势的竞争方法和出色的扫描范围和速度性能。该项目的重点是导管OCT成像优化的二维扫描仪的微加工和表征。微加工处理步骤将被设计成包括基于致动器几何形状和膜厚度对扫描性能的计算影响而选择的参数范围。将使用一套可用的测量工具表征器械的机械和光学特性。将根据光学扫描仪的实际性能对EOCT系统进行详细的光学模拟。优化的设备将与合适的光学组件集成,并纳入高速傅立叶域OCT扫描仪,以评估图像质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sonia Grego其他文献

Sonia Grego的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sonia Grego', 18)}}的其他基金

Smart Toilet with Artificial Intelligence for Remote Management of Inflammatory Bowel Disease
人工智能智能马桶可远程管理炎症性肠病
  • 批准号:
    10482219
  • 财政年份:
    2022
  • 资助金额:
    $ 23.71万
  • 项目类别:
Materials and Strategies for Lab-on-a-Chip
芯片实验室的材料和策略
  • 批准号:
    7277927
  • 财政年份:
    2007
  • 资助金额:
    $ 23.71万
  • 项目类别:
Micofabricated Cantilever-Based Scanner for forward-looking 3D Endoscopic Optical
用于前瞻 3D 内窥镜光学的微制造悬臂扫描仪
  • 批准号:
    7488537
  • 财政年份:
    2007
  • 资助金额:
    $ 23.71万
  • 项目类别:

相似海外基金

A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
All-in-One Smart Artificial Blood Vessels
一体化智能人造血管
  • 批准号:
    EP/X027171/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Fellowship
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
  • 批准号:
    23H02991
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tissue engineered blood vessels
组织工程血管
  • 批准号:
    2891099
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Studentship
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
  • 批准号:
    23K07176
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
  • 批准号:
    23H00551
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
  • 批准号:
    23H01343
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
  • 批准号:
    10749217
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
  • 批准号:
    23H01827
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
  • 批准号:
    22K21006
  • 财政年份:
    2022
  • 资助金额:
    $ 23.71万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了