Point Process Models of Human Heart Beat Interval Dynamics
人体心跳间隔动力学的点过程模型
基本信息
- 批准号:7193878
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Heart rate is a moment-to-moment indicator of cardiovascular integrity measured on every physical examination. Heart rate is also monitored continuously in patients under anesthesia, during surgery, in those treated in an intensive care unit and in fetuses during labor. Heart rate variability is an important quantitative marker of cardiovascular regulation by the autonomic nervous system that is widely used in research studies, as well as in clinical practice to diagnose both cardiovascular and non-cardiovascular diseases to track its progression and to assess the efficacy of therapies. The measurement and interpretation of heart rate and heart rate variability depend critically on how these quantities are computed from the time-series of R-wave events on the electrocardiogram. While the design of algorithms to compute heart rate and to assess heart rate variability is an active area of research, none of the current approaches considers the natural point process structure of human heart beats, together with the physiology underlying the generation of the discrete, biological events. To address these issues, the first four specific aims of this project are to test the hypotheses that: 1) Human heart beats can be accurately characterized by using a statistical framework based on point process models of the R-R intervals and that this framework can be used to establish new definitions of heart rate and heart rate variability. 2) We can develop local maximum likelihood and point process adaptive filtering algorithms to track in real-time heart rate and heart rate variability and goodness- of-fit methods based on the theory of point processes can be used to assess the agreement between human heart beat series and model estimates of these series derived from the algorithms. 3) The algorithms developed in Specific Aim 2 can be used to construct time domain and frequency domain measures of heart rate variability and to detect and correct, ectopic, erroneous and missed beats in heart beat series. 4) The analysis paradigm developed in Specific Aims 1 to 3 can be used to characterize cardiovascular and autonomic function in tilt-table and autonomic blockade assessments of the cardiovascular system, pathophysiology assessment in congestive heart failure, functional magnetic resonance imaging studies of the brain during meditation, and studies of circadian and sleep physiology. Specific Aim 5 is to provide on our website software to implement the statistical methods developed to address Specific Aims 1 to 4. This will facilitate the research of investigators wishing to characterize heart rate and heart rate variability as part of their physiological studies. The broad, long-term objectives of the project are to provide researchers with a coherent statistical paradigm to characterize cardiovascular control through analysis of heart beat interval dynamics. The health implications of this project are a more accurate characterization of cardiovascular control in research and clinical studies of both normal and pathological conditions.
描述(由申请人提供):心率是每次体检时测量的心血管完整性的即时指标。在麻醉下、手术期间、在重症监护室治疗的患者和分娩期间的胎儿中,心率也被连续监测。心率变异性是由自主神经系统进行的心血管调节的重要定量标志物,其被广泛用于研究研究以及临床实践中,以诊断心血管和非心血管疾病,以跟踪其进展并评估治疗效果。心率和心率变异性的测量和解释关键取决于如何从心电图上的R波事件的时间序列计算这些量。虽然计算心率和评估心率变异性的算法设计是一个活跃的研究领域,但目前的方法都没有考虑人类心跳的自然点过程结构,以及离散生物事件生成的生理学基础。为了解决这些问题,该项目的前四个具体目标是测试假设:1)人类心跳可以通过使用基于R-R间期的点过程模型的统计框架来准确地表征,并且该框架可以用于建立心率和心率变异性的新定义。2)我们可以开发局部最大似然和点过程自适应滤波算法来实时跟踪心率和心率变异性,并且基于点过程理论的拟合优度方法可以用于评估人类心跳序列与从算法导出的这些序列的模型估计之间的一致性。3)Specific Aim 2中开发的算法可用于构建心率变异性的时域和频域测量,并检测和纠正心跳系列中的异位、错误和遗漏心跳。4)具体目标1至3中开发的分析范例可用于在心血管系统的倾斜台和自主神经阻滞评估、充血性心力衰竭的病理生理学评估、冥想期间大脑的功能性磁共振成像研究以及昼夜节律和睡眠生理学研究中表征心血管和自主神经功能。具体目标5是在我们的网站上提供软件,以实施为实现具体目标1至4而开发的统计方法。这将有助于研究人员将心率和心率变异性作为其生理学研究的一部分进行研究。该项目的广泛的长期目标是为研究人员提供一个连贯的统计范式,通过分析心跳间隔动力学来表征心血管控制。该项目的健康影响是在正常和病理条件下的研究和临床研究中更准确地描述心血管控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICCARDO BARBIERI其他文献
RICCARDO BARBIERI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICCARDO BARBIERI', 18)}}的其他基金
Point Process Models of Human Heart Beat Interval Dynamics
人体心跳间隔动力学的点过程模型
- 批准号:
7345436 - 财政年份:2007
- 资助金额:
$ 39.38万 - 项目类别:
Point Process Models of Human Heart Beat Interval Dynamics
人体心跳间隔动力学的点过程模型
- 批准号:
7763875 - 财政年份:2007
- 资助金额:
$ 39.38万 - 项目类别:
Point Process Models of Human Heart Beat Interval Dynamics
人体心跳间隔动力学的点过程模型
- 批准号:
7568161 - 财政年份:2007
- 资助金额:
$ 39.38万 - 项目类别:
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
多臂Bandit process中的Bayes非参数方法
- 批准号:71771089
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2021
- 资助金额:
$ 39.38万 - 项目类别:
Discovery Grants Program - Individual
CDS&E: Point Process Models for Traffic Risk Analysis and Crash Prevention
CDS
- 批准号:
2053188 - 财政年份:2021
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
ATD: Relational Point Process Models: Theory, Methods, and Applications
ATD:关系点过程模型:理论、方法和应用
- 批准号:
2114727 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
- 批准号:
2015386 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Continuing Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
- 批准号:
2015382 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
ATD: Relational Point Process Models: Theory, Methods, and Applications
ATD:关系点过程模型:理论、方法和应用
- 批准号:
2027846 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Discovery Grants Program - Individual
Development of point process models and prediction methods for non-stationary seismic activity
非平稳地震活动点过程模型和预测方法的开发
- 批准号:
20K11722 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
507969-2017 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Discovery Grants Program - Individual