Confocal microscope

共焦显微镜

基本信息

  • 批准号:
    BB/E01304X/1
  • 负责人:
  • 金额:
    $ 30.61万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

To understand how living cells work, it is essential to visualise the processes that go on in them. We will use a specialised but powerful type of microscopy, confocal microscopy, to do this. Confocal microscopy yields very clear images of objects at a single level in the cell, by excluding light from other levels. Advances in technology make it easier to identify multiple structures and follow them in living cells. We will use this technology to study two processes in the fruitfly Drosophila / cell division, and communication between nerve cells (neurons). The correct segregation of duplicated chromosomes to daughter cells is essential for correct transmission of the genetic material. In the human egg, mistakes in chromosome segregation mean that offspring do not develop correctly because they have the wrong number of chromosomes. Such mistakes also predispose dividing cells to become tumour cells. Thus the mechanisms of chromosome segregation are important for critical aspects of medical science. The segregation of chromosomes into daughter cells requires a specialised structure called the spindle. Although first discovered over a century ago, we are only beginning to understand the intricacies of this complex molecular machine. The spindle is a bipolar structure, its two poles anchored in the two future daughter cells. It is built from microtubules, polymers along which replicated chromosomes move towards the two poles. Microtubules are dynamic: they grow and shrink, and tubulin monomers flow along their length. Their dynamics are regulated by many accessory proteins, including motor proteins that pull the chromosomes to the poles. At the spindle poles, microtubules interact with a body known as the centrosome. We will study how the centrosome is duplicated during the cell cycle. Chromosomes have a specialised component, the kinetochore, that interacts with the mitotic spindle. The kinetochore provides a platform for molecules that mediate chromosome attachment to the spindle and their transmission, along with molecules that monitor whether this process occurs correctly. Cell division is highly dynamic and proteins can flip from one state of activity to another by the addition of phosphate groups through the action of enzymes known as protein kinases. We are studying the roles of the protein kinases that orchestrate cell division. Finally, once chromosomes are segregated to daughter cells, the cell itself divides in a process known as cytokinesis. This requires changes in the spindle that regulate formation and constriction of a contractile circular ring-structure that is itself built of numerous molecular components. This work will study the interactions between the various components of the spindle and this contractile ring to bring about this process. Neuronal communication is fundamental to both normal brain function and neurological disease. Using confocal microscopy, we will study how neurons are connected. We will also study some of the ways in which they communicate. Communication depends on the ability to bud off a small area of a larger membrane to form a spherical structure (a vesicle), and then to traffic the vesicle to another location in the cell where it fuses with a target membrane. When an electrical signal reaches a nerve terminal, vesicles that contain neurotransmitter fuse with the cell membrane, releasing neurotransmitter that activates the next cell. The new surface membrane must be recovered by budding of vesicles into the cell interior, where they replenish the supply of synaptic vesicles. Budding also internalises signaling molecules bound to receptors on the cell surface, so that they can signal further, or be trafficked to where they are degraded. Using confocal microscopy, we will monitor receptors, vesicles, and the microtubules that they move along, to understand the mechanisms by which this traffic occurs, and how it contributes to neuronal signalling.
要了解活细胞是如何工作的,必须将它们中进行的过程可视化。我们将使用一种专门但功能强大的显微镜,共聚焦显微镜来做到这一点。共聚焦显微镜通过排除来自其他水平的光,在细胞中的单个水平产生非常清晰的物体图像。技术的进步使得识别多种结构并在活细胞中跟踪它们变得更加容易。我们将使用这种技术来研究果蝇/细胞分裂中的两个过程,以及神经细胞(神经元)之间的通信。复制的染色体正确地分离到子细胞对于遗传物质的正确传递是必不可少的。在人类卵子中,染色体分离的错误意味着后代不能正确发育,因为他们有错误的染色体数量。这些错误也使分裂的细胞容易变成肿瘤细胞。因此,染色体分离的机制对于医学科学的关键方面是重要的。将染色体分离成子细胞需要一种称为纺锤体的特殊结构。虽然早在世纪前就被发现了,但我们才刚刚开始了解这种复杂分子机器的复杂性。纺锤体是双极结构,其两极锚定在两个未来的子细胞中。它是由微管构成的,微管是一种聚合物,复制的染色体沿着微管沿着向两极移动。微管是动态的:它们生长和收缩,微管蛋白单体沿着它们的长度流动。它们的动力学受到许多辅助蛋白的调节,包括将染色体拉向两极的马达蛋白。在纺锤体的两极,微管与中心体相互作用。我们将研究中心体在细胞周期中是如何复制的。染色体有一个专门的组成部分,动粒,与有丝分裂纺锤体相互作用。着丝粒为介导染色体附着到纺锤体及其传输的分子提供了一个平台,沿着的分子监测这一过程是否正确发生。细胞分裂是高度动态的,蛋白质可以通过被称为蛋白激酶的酶的作用添加磷酸基团而从一种活性状态翻转到另一种活性状态。我们正在研究协调细胞分裂的蛋白激酶的作用。最后,一旦染色体被分离成子细胞,细胞本身就在一个称为胞质分裂的过程中分裂。这需要纺锤体的变化来调节收缩性圆环结构的形成和收缩,该结构本身由许多分子成分组成。这项工作将研究纺锤体的各个组成部分之间的相互作用和这个收缩环,以实现这一过程。神经元通信是正常脑功能和神经系统疾病的基础。使用共聚焦显微镜,我们将研究神经元是如何连接的。我们还将研究他们交流的一些方式。通讯依赖于从一个较大的膜的一个小区域发芽形成一个球形结构(囊泡),然后将囊泡运输到细胞中的另一个位置,在那里它与目标膜融合。当电信号到达神经末梢时,含有神经递质的囊泡与细胞膜融合,释放神经递质激活下一个细胞。新的表面膜必须通过小泡出芽进入细胞内部来恢复,在那里它们补充突触小泡的供应。芽殖还内化与细胞表面受体结合的信号分子,以便它们可以进一步发出信号,或者被运输到它们被降解的地方。使用共聚焦显微镜,我们将监测受体,囊泡,和微管,他们沿沿着移动,以了解这种交通发生的机制,以及它如何有助于神经元信号。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Drosophila SPG12 ortholog, reticulon-like 1, governs presynaptic ER organization and Ca2+ dynamics.
果蝇 SPG12 直系同源物,网状蛋白 1,控制突触前 ER 组织和 Ca2 动态。
  • DOI:
    10.17863/cam.94408
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pérez-Moreno J
  • 通讯作者:
    Pérez-Moreno J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Glover其他文献

Bigheaded carps (Hypophthalmichthys spp.) at the edge of their invaded range: using hydroacoustics to assess population parameters and the efficacy of harvest as a control strategy in a large North American river
处于入侵范围边缘的鳙鱼(Hypophamichthys spp.):利用水声学评估种群参数和捕捞效果,作为北美大河流的控制策略
  • DOI:
    10.1007/s10530-016-1220-4
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    R. MacNamara;David Glover;J. Garvey;W. Bouska;K. Irons
  • 通讯作者:
    K. Irons
Granulomatosis with polyangiitis: an unusual cause of acute liver injury
肉芽肿性多血管炎:急性肝损伤的罕见原因
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    D. Rees;A. Gunavardhan;David Glover
  • 通讯作者:
    David Glover
Special Topic II: Economy and Environmental Program for Southeast Asia (EEPSEA)
专题二:东南亚经济与环境计划(EEPSEA)
Low Genetic Diversity in the Ground Parrot (Pezoporus wallicus) Revealed by Randomly Amplified DNA Fingerprinting
随机扩增 DNA 指纹图谱揭示了地面鹦鹉 (Pezoporus wallicus) 的低遗传多样性
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Chan;David Glover;C. Ramage;D. Harrison
  • 通讯作者:
    D. Harrison
Stem cell-derived mouse embryos develop within an extra-embryonic yolk sac to form anterior brain regions and a beating heart
干细胞衍生的小鼠胚胎在胚胎外卵黄囊内发育,形成前脑区域和跳动的心脏
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Amadei;C. Handford;Joachim De Jonghe;F. Hollfelder;David Glover;M. Zernicka
  • 通讯作者:
    M. Zernicka

David Glover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Glover', 18)}}的其他基金

MRC Program grant
MRC 计划拨款
  • 批准号:
    G1001696-E01/1
  • 财政年份:
    2011
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Research Grant
Roles for the APC/C in the centrosome cycle and the centrosomal regulation of the APC/C activity
APC/C 在中心体循环中的作用以及 APC/C 活性的中心体调节
  • 批准号:
    BB/I013938/1
  • 财政年份:
    2011
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Research Grant
Dissection of kinetochore structure and function in Drosophila
果蝇动粒结构和功能的解剖
  • 批准号:
    BB/E011586/1
  • 财政年份:
    2007
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Research Grant
Literature, Immigration, Diaspora: A Cultural History of the 1905 Aliens Act
文学、移民、侨民:1905 年《外国人法》的文化史
  • 批准号:
    AH/E504108/1
  • 财政年份:
    2007
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Research Grant
Interplay between the Polo and Scant/Greatwall mitotic kinases
Polo 和 Scant/Greatwall 有丝分裂激酶之间的相互作用
  • 批准号:
    G0501718/1
  • 财政年份:
    2006
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Research Grant
Coordination and Data Management for Ocean Carbon Cycle Research
海洋碳循环研究的协调和数据管理
  • 批准号:
    0510046
  • 财政年份:
    2005
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
A Coupled Epipelagic Meso-/Bathypelagic Particle Flux Model for the Bermuda Atlantic Time-Series Station/Oceanic Flux Program Site
百慕大大西洋时间序列站/海洋通量计划站点的耦合表层中层/深海粒子通量模型
  • 批准号:
    0097288
  • 财政年份:
    2001
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Data Management for the Global Ocean Flux Study (GOFS)
全球海洋通量研究 (GOFS) 的数据管理
  • 批准号:
    9116142
  • 财政年份:
    1992
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Continuing Grant
Data Management for the Global Ocean Flux Study (GOFS)
全球海洋通量研究 (GOFS) 的数据管理
  • 批准号:
    8814310
  • 财政年份:
    1989
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

磁力显微镜对纳米尺度磁畴结构的定量研究
  • 批准号:
    51071088
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

High Resolution Confocal light microscope with incubation chamber (Teilfinanzierung(
带孵化室的高分辨率共焦光学显微镜(部分资助(
  • 批准号:
    538776603
  • 财政年份:
    2024
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
Confocal microscope
共焦显微镜
  • 批准号:
    538923994
  • 财政年份:
    2024
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
Confocal laser scanning microscope
共焦激光扫描显微镜
  • 批准号:
    540575830
  • 财政年份:
    2024
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
Confocal laser scanning microscope with fast fluorescence lifetime imaging module
具有快速荧光寿命成像模块的共焦激光扫描显微镜
  • 批准号:
    540803833
  • 财政年份:
    2024
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
Live cell spinning disk confocal microscope with single molecule localization module
具有单分子定位模块的活细胞转盘共聚焦显微镜
  • 批准号:
    514497685
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
Inverted confocal-laser-scanning-microscope with an extended excitation-emission spectrum
具有扩展激发发射光谱的倒置共焦激光扫描显微镜
  • 批准号:
    525029482
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
Lumicks C-Trap Optical Tweezers with Confocal Fluorescence Microscope
Lumicks C-Trap 光镊与共焦荧光显微镜
  • 批准号:
    10629714
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
Acquisition of a Zeiss LSM 900 confocal microscope with Airyscan 2 for an Imaging and Microscopy Core
购买配备 Airyscan 2 的 Zeiss LSM 900 共焦显微镜作为成像和显微镜核心
  • 批准号:
    10632858
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
Confocal laser scanning microscope
共焦激光扫描显微镜
  • 批准号:
    517966069
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了