The role of Cenp-F and Nudel in chromosome segregation

Cenp-F 和 Nudel 在染色体分离中的作用

基本信息

  • 批准号:
    BB/E015034/1
  • 负责人:
  • 金额:
    $ 54.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

THE BIG PICTURE: The fertilisation of a human egg by a sperm generates a single cell, which, following successive rounds of cell division, creates a person comprised of billions of cells. Before each division, the cell must replicate and segregate its genome such that both daughter cells receive all the genetic information required for further growth and development. Because the human genome is divided into 46 chromosomes, the segregation process presents a challenge to the cell: it is critical that each daughter cell receives one copy of each chromosome. If the segregation process is not accurate, a cell may either gain or lose chromosomes. Unfortunately, such events do occur and they are often associated with age-related diseases. For example, Downs syndrome arises when a child inherits an extra copy of chromosome 21. In addition, human cancer cells routinely make errors and consequently have highly irregular numbers of chromosomes. We are interested in understanding the molecular mechanisms cells use to accurately segregate their chromosomes, and how these mechanisms go wrong in diseases associated with aging. CENTROMERES ENSURE ACCURATE CHROMOSOME SEGREGATION: When a cell is ready to divide, it assembles a bipolar microtubule spindle to which the chromosomes attach. When all the chromosomes are attached, they spilt longitudinally into two sister chromatids which are pulled to opposite poles. The cell then divides down the spindle equator such that each daughter cell receives one copy of each chromatid. If the chromosomes are to be segregated accurately, two criteria must be satisfied. First, the chromosomes must biorient, i.e. sisters must attach to opposite poles. Second, because chromosomes split synchronously, splitting must not occur until every chromosome is bioriented. Centromeres, specialised chromosomal-subdomains play two key functions in this process. Firstly, they assemble kinetochores, protein-structures which capture microtubules and move chromosomes on the spindle. Kinetochores sit back-to-back on each chromatid thus facilitating biorientation. Importantly, kinetochores also regulate a surveillance mechanism, the spindle checkpoint, which prevents splitting until all the chromosomes are bioriented. Second, centromeres are the sites which hold the sister chromatids together, a process know as cohesion. Importantly, cohesion must be maintained until all the chromosomes are bioriented: if prematurely dissolved, sisters will not be able to attach to opposite spindle poles. To understand how centromeres perform these functions, our strategy is to focus on key proteins and dissect their properties at the molecular level. OUR PLAN: Cenp-F is a large multi-functional protein which localises to kinetochores. Recent studies indicate that Cenp-F is required for kinetochore-microtubule interactions and chromatid cohesion. We have discovered that Cenp-F binds a protein called Nudel, suggesting that Cenp-F's function might be mediated via Nudel. A major part of this proposal therefore is to dissect the role of Nudel and define its relationship with Cenp-F. However, because of the limitation of the methodology used thus far to study Cenp-F function, its exact role remains controversial. In addition, Cenp-F may play roles outside of chromosome segregation. In particular, Nudel clearly plays roles in post-mitotic neurons. In addition, Cenp-F is a substrate of APC-Cdh1, an enzyme complex required for axonal growth and patterning, as well as synaptic development and function. Furthermore, Cenp-F-related proteins are required for myogenesis. Therefore, to unambiguously define Cenp-F's role and to study it in the wider context of the whole organism, we will generate a strain of mice harbouring a mutation in the CENP-F gene. Not only will this approach allow us to investigate Cenp-F's function in vivo, but it will also provide powerful new in vitro systems to tease apart the various functions of this poorly understood protei
大局观:精子使人类卵子受精,产生一个单细胞,经过连续几轮的细胞分裂,创造出一个由数十亿个细胞组成的人。在每次分裂之前,细胞必须复制并分离其基因组,以便两个子细胞接收进一步生长和发育所需的所有遗传信息。由于人类基因组被分为46条染色体,分离过程对细胞提出了挑战:每个子细胞接收每条染色体的一个拷贝是至关重要的。如果分离过程不准确,细胞可能获得或失去染色体。不幸的是,这些事件确实发生,而且往往与年龄相关的疾病有关。例如,唐斯综合征是由一个孩子遗传了一条额外的21号染色体引起的。此外,人类癌细胞通常会出错,因此染色体数量非常不规则。我们感兴趣的是了解细胞用于精确分离染色体的分子机制,以及这些机制在与衰老相关的疾病中如何出错。着丝粒确保准确的染色体分离:当细胞准备分裂时,它组装一个双极微管纺锤体,染色体附着在纺锤体上。当所有的染色体都附着在一起时,它们纵向分裂成两个姐妹染色单体,并被拉向相反的两极。然后,细胞沿着纺锤体赤道分裂,使得每个子细胞接收每个染色单体的一个拷贝。如果要准确地分离染色体,必须满足两个标准。首先,染色体必须是双向的,即姐妹篇必须附着在相反的两极。第二,因为染色体同步分裂,所以分裂必须在每个染色体都是双向的之前才发生。着丝粒,专门的染色体亚结构域在这一过程中发挥两个关键作用。首先,它们组装动粒,即捕获微管并在纺锤体上移动染色体的蛋白质结构。着丝粒背靠背地位于每个染色单体上,从而促进双向定位。重要的是,动粒还调节一种监视机制,即纺锤体检查点,它阻止分裂,直到所有染色体都是双向的。其次,着丝粒是将姐妹染色单体结合在一起的位点,这一过程被称为内聚。重要的是,必须保持凝聚力,直到所有的染色体都是双向的:如果过早溶解,姐妹篇将无法连接到相反的纺锤体两极。为了了解着丝粒如何执行这些功能,我们的策略是专注于关键蛋白质,并在分子水平上剖析它们的特性。我们的观点:Cenp-F是一种定位于动粒的大型多功能蛋白质。最近的研究表明,Cenp-F是所需的着丝粒微管相互作用和染色单体凝聚力。我们已经发现Cenp-F结合了一种名为Nudel的蛋白质,这表明Cenp-F的功能可能是通过Nudel介导的。因此,该提案的一个主要部分是剖析Nudel的作用,并定义其与Cenp-F的关系。然而,由于迄今为止用于研究Cenp-F函数的方法的局限性,其确切作用仍然存在争议。此外,Cenp-F可能在染色体分离之外发挥作用。特别是,Nudel显然在有丝分裂后的神经元中发挥作用。此外,Cenp-F是APC-Cdh 1的底物,APC-Cdh 1是轴突生长和图案化以及突触发育和功能所需的酶复合物。此外,Cenp-F相关蛋白是肌生成所需的。因此,为了明确定义Cenp-F的作用并在整个生物体的更广泛背景下研究它,我们将产生一种在CENP-F基因中携带突变的小鼠品系。这种方法不仅使我们能够研究Cenp-F在体内的功能,而且还将提供强大的新体外系统来梳理这种知之甚少的蛋白质的各种功能。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Taylor其他文献

A Hausdorff measure classification of polar sets for the heat equation
热方程极集的豪斯多夫测度分类
The long shadows cast by the field: violence, trauma, and the ethnographic researcher
该领域投下的长长的阴影:暴力、创伤和民族志研究者
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Taylor
  • 通讯作者:
    Stephen Taylor
A quantitative investigation of electron detrapping in SiO2 under Fowler–Nordheim stress
Fowler-Nordheim 应力下 SiO2 中电子去俘获的定量研究
  • DOI:
    10.1063/1.350452
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    J. Zhang;Stephen Taylor;W. Eccleston
  • 通讯作者:
    W. Eccleston
Can Virtual Replace In-person Coaching? Experimental Evidence on Teacher Professional Development and Student Learning in South Africa
虚拟辅导可以取代面对面辅导吗?
FITC-lectin avidity of Cryptococcus neoformans cell wall and capsular components
新型隐球菌细胞壁和荚膜成分的 FITC-凝集素亲合力
  • DOI:
    10.1080/15572536.2005.11832989
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. J. Foster;R. Bird;S. Kelly;K. Nishimura;David A. Poyner;Stephen Taylor;Stephen N. Smith
  • 通讯作者:
    Stephen N. Smith

Stephen Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Taylor', 18)}}的其他基金

High-grade serous ovarian cancer: exploiting a living biobank to delineate mechanisms underlying disease-specific chromosome instability
高级别浆液性卵巢癌:利用活生物库来描述疾病特异性染色体不稳定的机制
  • 批准号:
    MR/X008088/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
WoU-MMA: Mapping the host galaxies of low-frequency gravitational-wave sources
WoU-MMA:绘制低频引力波源的主星系图
  • 批准号:
    2307719
  • 财政年份:
    2023
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Standard Grant
CAREER: Unveiling the Nanohertz GW Discovery Landscape by Broadening Participation In Multi-Messenger Astrophysics
职业生涯:通过扩大多信使天体物理学的参与来揭示纳赫兹引力波发现景观
  • 批准号:
    2146016
  • 财政年份:
    2021
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Continuing Grant
WoU-MMA: Multi-messenger Titans: Probing The Dynamics & Environments Of Supermassive Binary Black Holes
WoU-MMA:多信使泰坦:探索动态
  • 批准号:
    2007993
  • 财政年份:
    2020
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Standard Grant
Cultural Heritage 360
文化遗产360
  • 批准号:
    AH/V005596/1
  • 财政年份:
    2020
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
Non-genetic heterogeneity in response to anti-mitotic chemotherapeutics
抗有丝分裂化疗药物反应的非遗传异质性
  • 批准号:
    MR/L006839/1
  • 财政年份:
    2014
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
Digital Multi-channel Tibial Implants in Orthopedic Medicine
数字化多通道胫骨植入物在骨科医学中的应用
  • 批准号:
    TS/G002320/1
  • 财政年份:
    2009
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
Hawaii-Vancouver Education, Assessment, and Articulation Planning Visit: Vancouver, Canada, July-August 2009
夏威夷-温哥华教育、评估和衔接规划访问:加拿大温哥华,2009 年 7 月至 8 月
  • 批准号:
    0938979
  • 财政年份:
    2009
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Standard Grant
Microengineering of Quadrupole Mass Spectrometers using RP techniques
使用 RP 技术的四极杆质谱仪微工程
  • 批准号:
    EP/F008848/1
  • 财政年份:
    2007
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
Research Experiences for Undergraduates in Chemistry at Hope College
希望学院化学专业本科生的研究经历
  • 批准号:
    9619667
  • 财政年份:
    1997
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Continuing Grant

相似国自然基金

CENP-A 异常上调介导基因组不稳定性调控胶质瘤发生发 展的机制探究
  • 批准号:
    2024JJ6261
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
动粒蛋白CENP-U调控姐妹染色单体粘连的功能与分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
动粒亚基CENP-I调控着丝粒稳态与细胞分裂的分子机制与功能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
横纹肌肉瘤(RMS)和骨骼肌分化中的CENP-A 和MAD2的细胞器间信号传导。
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
横纹肌肉瘤(RMS)和骨骼肌分化中的CENP-A 和MAD2的细胞器间信号传导
  • 批准号:
    82141111
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    专项项目
动粒亚基CENP-H/I/K对着丝粒特异识别与动粒组装新机制的研究
  • 批准号:
    32000496
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
CENP-N/β-TrCP1/Smad3调控糖酵解促进鼻咽癌转移
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
驱动蛋白CENP-E调控精母细胞动粒-微管捕获和纺锤体组装检验点的分子机理
  • 批准号:
    82001608
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
人源CENP-A核小体/CENP-CLNHIKM复合物在动粒组装中的结构与功能研究
  • 批准号:
    32000858
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CENP-N/USP37通过介导有氧糖酵解增强酸性微环境促进鼻咽癌侵袭转移
  • 批准号:
    82002863
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanistic Basis for CENP-32 Mediated Regulation of Cell Division
CENP-32 介导的细胞分裂调节的机制基础
  • 批准号:
    MR/X001245/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
Structural analyses of the chromatin-like structure of histone-fold CENP-SX complex
组蛋白折叠 CENP-SX 复合物的染色质样结构的结构分析
  • 批准号:
    23K05671
  • 财政年份:
    2023
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanism of Chromosomal Instability-mediated Induction of Innate Immune Responses by CENP-E Inhibitors
CENP-E 抑制剂诱导染色体不稳定性介导的先天免疫反应的机制
  • 批准号:
    23K06708
  • 财政年份:
    2023
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the molecular mechanism of CENP-T-mediated centromere-kinetochore formation
了解 CENP-T 介导的着丝粒着丝粒形成的分子机制
  • 批准号:
    23K14125
  • 财政年份:
    2023
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of chromatin structure produced by CENP-B acidic region and application to new synthetic transcription factors.
CENP-B酸性区产生的染色质结构的阐明及其在新合成转录因子中的应用。
  • 批准号:
    22K14866
  • 财政年份:
    2022
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The role of CENP-A in the response to DNA double-strand breaks
CENP-A 在 DNA 双链断裂反应中的作用
  • 批准号:
    10605363
  • 财政年份:
    2022
  • 资助金额:
    $ 54.16万
  • 项目类别:
The role of CENP-A in the response to DNA double-strand breaks
CENP-A 在 DNA 双链断裂反应中的作用
  • 批准号:
    10443414
  • 财政年份:
    2022
  • 资助金额:
    $ 54.16万
  • 项目类别:
Structural and functional analysis of FANCM-CENP-SX complex
FANCM-CENP-SX复合物的结构和功能分析
  • 批准号:
    20K06512
  • 财政年份:
    2020
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving early detection and diagnosis of breast cancer among multi-ethnic rural communities in Malaysia - implementation of the CENP
改善马来西亚多民族农村社区乳腺癌的早期检测和诊断 - CENP 的实施
  • 批准号:
    MR/V005901/1
  • 财政年份:
    2020
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Research Grant
Defining the spatial and temporal function of the CENP-E motor during mitosis using rapid light-induced regulation
使用快速光诱导调节定义有丝分裂期间 CENP-E 电机的空间和时间功能
  • 批准号:
    1868240
  • 财政年份:
    2017
  • 资助金额:
    $ 54.16万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了