Small Animal In vivo quantification of cerebral glucose metabolic rate
小动物体内脑葡萄糖代谢率定量
基本信息
- 批准号:7471287
- 负责人:
- 金额:$ 16.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-15 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimal Disease ModelsAnimal ModelAnimalsArterial LinesAutoradiographyBloodBlood specimenBrainBrain MappingBrain imagingCentral Nervous System DiseasesCerebrumClinicClinicalCognitiveCommunitiesConditionCountDevelopmentDevicesDiseaseEdemaEnd PointExperimental ModelsGlucoseGoalsHeartHematomaImageImaging DeviceImaging TechniquesInfectionInjuryInvasiveIsotopesKineticsKnowledgeLeft ventricular structureLinkManualsMapsMeasurementMeasuresMental DepressionMetabolicMetabolismMethodologyMethodsMicrofluidic MicrochipsMicrofluidicsModalityModelingMonitorNumbersOperative Surgical ProceduresOutcomePathologyPatient MonitoringPlasmaPlasma CellsPositron-Emission TomographyProceduresProcessPublic HealthRadiationRateRattusRecoveryRecovery of FunctionReproducibilityResearchResearch PersonnelSafetySamplingScanningSimulateStandards of Weights and MeasuresTBI PatientsTechniquesTechnologyTimeTracerTranslational ResearchTraumaTraumatic Brain InjuryVenousbaseclinically relevantcostdayglucose uptakeheart imagingimprovedin vivoprototyperadiotracertooluptake
项目摘要
DESCRIPTION (provided by applicant): Positron emission tomography (PET) is widely used to map the cerebral metabolic rate of glucose (CMRG) and is widely used to indicate cognitive and outcome status in the clinical arena. However, use of this imaging modality in clinically relevant small animal models of disease remains infrequent, and the majority of microPET imaging studies remain non-quantitative. Major impediments to more wide-spread use of quantitative microPET include blood sampling requirements. Solving the methodological issues that have limited the utility of small animal PET imaging for accurate and repeated quantitative measurements of CMRG will provide an important tool to enhance research in a variety of disease states. Studies are proposed to improve in vivo, multi-time-point quantification of CMRG by integrating small animal microPET with microfluidic plasma sampling technology. In vivo CMRG values determined using this automated microfluidics methodology will be compared against those determined using traditional, manually drawn sampling methods in the same animals. A second microPET study will determine the accuracy and utility of a minimally-invasive method of simultaneous measurement of blood and brain glucose isotope concentration. Since PET imaging is used so extensively in the neurosurgical clinic to monitor patients with traumatic brain injury (TBI) we will conduct a proof-of-principle study using the optimal microPET methods determined in our second microPET study to quantify the acute post-injury depression of CMRG and its recovery in an experimental model of mild-moderate unilateral TBI in rats. The accuracy and reliability of microPET-based CMRG values will be compared against values derived from end-point standard autoradiography methods. Successful completion of the proposed research will make multi-time-point, quantitative microPET imaging of small animals safe and routinely feasible. This will represent a major advance in the utility of this important translational research tool and should enhance progress in the monitoring and development of potential therapies for treatment of TBI and other diseases of the central nervous system. PUBLIC HEALTH RELEVANCE: The studies will be performed to improve the safety and reliability and to reduce the number of invasive procedures needed to conduct quantitative imaging of brain glucose utilization in small animals. A new automated plasma sampling device that is capable of taking very small samples of blood as well as separating plasma from the blood cells will be developed and integrated into current brain imaging procedures. Rates of brain glucose use will be calculated, comparing the values obtained in calculations using blood plasma samples or a single plasma sample in combination with imaging glucose uptake in both heart and brain. The optimal imaging method will be used to monitor changes in brain glucose use over time in rats with experimental traumatic brain injury. Upon completion of this project a new imaging tool will be available to researchers to study brain function under physiologically stable conditions with minimal radiation exposure.
描述(由申请人提供):正电子发射断层扫描(PET)被广泛用于绘制葡萄糖的脑代谢率(CMRG),并被广泛用于临床领域的认知和结果状态。然而,在临床相关的小动物疾病模型中使用这种成像方式仍然很少,而且大多数显微pet成像研究仍然是非定量的。广泛使用定量微pet的主要障碍包括血液采样要求。解决方法上的问题,这些问题限制了小动物PET成像对CMRG精确和重复定量测量的应用,将为加强各种疾病状态的研究提供重要工具。提出了将小动物微pet与微流控等离子体采样技术相结合,改进CMRG在体内多时间点定量的研究。使用这种自动化微流体方法测定的体内CMRG值将与在同一动物中使用传统的手动绘制采样方法测定的值进行比较。第二项微pet研究将确定同时测量血液和脑葡萄糖同位素浓度的微创方法的准确性和实用性。由于PET成像在神经外科临床中广泛用于监测创伤性脑损伤(TBI)患者,我们将使用我们在第二项微PET研究中确定的最佳微PET方法进行原理验证研究,以量化大鼠轻度-中度单侧TBI实验模型中CMRG的急性损伤后抑郁及其恢复。基于微pet的CMRG值的准确性和可靠性将与终点标准放射自显影方法得出的值进行比较。本研究的成功完成将使小动物的多时间点、定量显微pet成像安全可行。这将代表这一重要的转化研究工具的重大进步,并将加强监测和开发治疗创伤性脑损伤和其他中枢神经系统疾病的潜在疗法的进展。公共卫生相关性:本研究将提高安全性和可靠性,并减少对小动物脑葡萄糖利用进行定量成像所需的侵入性程序的数量。一种新的自动血浆采样装置将被开发出来,它能够采集非常小的血液样本,并将血浆从血细胞中分离出来,并将其集成到当前的脑成像程序中。将计算脑葡萄糖使用率,比较使用血浆样本或单个血浆样本与心脏和大脑成像葡萄糖摄取相结合的计算值。最佳成像方法将用于监测实验性创伤性脑损伤大鼠脑葡萄糖使用随时间的变化。该项目完成后,研究人员将可以使用一种新的成像工具,在最小辐射照射的生理稳定条件下研究大脑功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Hsiao-Ming Wu其他文献
Christine Hsiao-Ming Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Investigating how TRAF1 Controls Inflammasome Activation in Animal Disease Models of Inflammatory Arthritis and Peritonitis
研究 TRAF1 如何控制炎症性关节炎和腹膜炎动物疾病模型中的炎症小体激活
- 批准号:
449429 - 财政年份:2020
- 资助金额:
$ 16.84万 - 项目类别:
Studentship Programs
Establishment of animal disease models for intractable pediatric diseases due to defects of RNA metabolism and development of new therapeutics
RNA代谢缺陷引起的儿科疑难疾病动物模型的建立及新疗法的开发
- 批准号:
20H03644 - 财政年份:2020
- 资助金额:
$ 16.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of type 2 diabetes susceptibility genes using animal disease models
利用动物疾病模型对2型糖尿病易感基因进行功能分析
- 批准号:
18K08466 - 财政年份:2018
- 资助金额:
$ 16.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cell therapy of adipocytes derived from human iPS cells using cellcontainers and animal disease models
使用细胞容器和动物疾病模型对源自人类 iPS 细胞的脂肪细胞进行细胞治疗
- 批准号:
24659444 - 财政年份:2012
- 资助金额:
$ 16.84万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis of genes involved in the pathogenesis of the arthritis using animal disease models..
使用动物疾病模型分析涉及关节炎发病机制的基因。
- 批准号:
17500284 - 财政年份:2005
- 资助金额:
$ 16.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ESTABLISHMENT OF THE DEVELOPING AND SUPPLING SYSTEMS FOR NEW ANIMAL,DISEASE MODELS FROM SUBSPECIES OF THE MOUSE
小鼠亚种新动物、疾病模型的开发和供应体系的建立
- 批准号:
07556128 - 财政年份:1995
- 资助金额:
$ 16.84万 - 项目类别:
Grant-in-Aid for Scientific Research (A)