Dynamics of bifurcations with broken reflection symmetry in finite domains

有限域中反射对称性破缺的分岔动力学

基本信息

  • 批准号:
    EP/D032334/1
  • 负责人:
  • 金额:
    $ 23.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

In this application we request support to fund a post-doctoral research assistant to explore the complex dynamics found in bounded systems that are unstable to travelling waves with a preferred direction. These occur when the system has a broken reflection symmetry. There are many physical examples of such systems including shear-flow instabilities in fluid dynamics, reaction diffusion systems in the presence of flow, and instabilities in rotating systems such as the MHD dynamo instability. In the past we have made significant progress in understanding such systems using techniques from dynamical systems and the latest numerical methods. The proposed research would extend our understanding to three new and important cases. The first arises when the instability sets in with a preferred non-zero wavenumber, such as for the Kuramoto-Sivashinsky equation. Here there exists a competition between wavenumber selection mechanisms in the nonlinear regime. The second case looks at the effect of spatial inhomogeneities on these travelling wave instabilities either through the inclusion of a resonant term (if the inhomogeneity is on the scale of the carrier wave) or the introduction of a varying background state (if the inhomogeneity is on the modulational lengthscale). For these cases the symmetry breaking is expected to alter significantly the behaviour of the system with a competition between the symmetry breaking and the pinning by the inhomogeneity. In the final case we examine systems with a global constraint that manifests itself through coupling of the upstream and downstream boundaries to understand how such a coupling can lead to recycling of disturbances throughout the domain.
在这个应用程序中,我们请求支持资助博士后研究助理,以探索在有界系统中发现的复杂动力学,这些系统对具有首选方向的行波不稳定。当系统具有破缺的反射对称性时,这些会发生。这类系统有许多物理实例,包括流体动力学中的剪切流不稳定性、存在流动的反应扩散系统以及旋转系统中的不稳定性,如MHD发电机不稳定性。在过去,我们已经取得了重大进展,了解这样的系统使用技术从动力系统和最新的数值方法。拟议的研究将把我们的理解扩展到三个新的重要案例。第一种情况是当不稳定性以一个优选的非零波数出现时,例如Kuramoto-Sivashinsky方程。在非线性区域存在波数选择机制之间的竞争。第二种情况下着眼于这些行波不稳定性的空间不均匀性的效果,无论是通过包含一个谐振项(如果不均匀性是在载波的规模)或引入一个不同的背景状态(如果不均匀性是在调制的长度尺度)。对于这些情况下,对称性破缺预计会显着改变系统的行为与对称性破缺和钉扎之间的竞争的不均匀性。在最后一种情况下,我们检查系统的全局约束,体现自己通过耦合的上游和下游的边界,以了解这样的耦合可以导致整个域的干扰再循环。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localized plumes in three-dimensional compressible magnetoconvection Localized plumes in magnetoconvection
三维可压缩磁对流中的局部羽流 磁对流中的局部羽流
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Tobias其他文献

Perhaps the Decision of Some Students not to Engage in Learning Mathematics in School is Deliberate
  • DOI:
    10.1007/s10649-006-1348-8
  • 发表时间:
    2006-05-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Peter Sullivan;Steve Tobias;Andrea McDonough
  • 通讯作者:
    Andrea McDonough
…Where did I lose you? Accessing the literacy demands of assessment
……我在哪里失去了你?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Colleen Kaesehagen;V. Klenowski;R. Funnell;Steve Tobias
  • 通讯作者:
    Steve Tobias
MERJ special issue—editorial

Steve Tobias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Tobias', 18)}}的其他基金

Hub for the National Fellowships in Fluid Dynamics (NFFDy Hub)
国家流体动力学奖学金中心(NFFDy 中心)
  • 批准号:
    EP/W032740/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant
UK Fluids Network
英国流体网络
  • 批准号:
    EP/P000851/1
  • 财政年份:
    2016
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant
A Consolidated Grant in Astrophysical Fluids In Applied Mathematics at Leeds
利兹应用数学天体物理流体综合资助
  • 批准号:
    ST/K000853/1
  • 财政年份:
    2013
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant
MHD turbulence and the generation of large-scale fields in the Sun.
MHD 湍流和太阳中大规模场的产生。
  • 批准号:
    PP/D00179X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant

相似海外基金

Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Arctic sea ice and bifurcations in a hierarchy of simplemodels (tentative)
简单模型层次结构中的北极海冰和分叉(暂定)
  • 批准号:
    2277781
  • 财政年份:
    2023
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Studentship
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
  • 批准号:
    2246630
  • 财政年份:
    2023
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
  • 批准号:
    EP/W009455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant
Towards universality of delayed and quickened bifurcations in biological signalling
迈向生物信号传导中延迟和加速分歧的普遍性
  • 批准号:
    EP/W032317/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Research Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Discovery Grants Program - Individual
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
  • 批准号:
    2204758
  • 财政年份:
    2021
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Continuing Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
  • 批准号:
    2005262
  • 财政年份:
    2020
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
  • 批准号:
    1933583
  • 财政年份:
    2020
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Standard Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 23.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了