Nanoscale electro-optics of metals and molecules using UHV-STM
使用 UHV-STM 的金属和分子纳米级电光
基本信息
- 批准号:EP/D048850/1
- 负责人:
- 金额:$ 66.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imagine a light source so small that it is able to generate information from just a single molecule. That's the idea behind this project. But why should we want to do this? The background blurb runs something like this. Electronic device sizes are continually being reduced to yield greater processing power in a smaller space at greater speed; the same goes for the size of the basic memory element in data storage devices. However, the drive to sub-100 nm sizes (1 nm is one millionth of 1 mm) is based on pushing conventional patterning technology to new limits; it's basically a glossed-up version of the same old technology that was used to produce micron scale stuff a decade or more ago. Instead of chipping away bit by bit at the size thing, could it not be treated in a more revolutionary fashion? Is it possible, for example, to make processing elements based on single molecules? That would knock the processing element size down to 1 nm or so. But how do we go about assessing this possibility? In real terms that is, not nice thought experiments. To do this we need to address single molecules and read information from them.The instrument that will be used to do this is called a scanning tunnelling microscope or STM for short. It can hold an electrically conducting tip an incredibly small distance (1 nm or less) above a conducting surface. When a bias is applied between tip and surface some electrons cross the gap - a small current flows (pA to nA scale). This happens by a quantum mechanical process called tunnelling - in terms of 'classical' physics, no current should flow because the gap is electrically insulating! As you might guess, there is some pretty nifty feedback involved in keeping the tip a fixed distance of just 1 nm above the sample. The STM can then move the tip in a controlled way to build up an image of the sample surface with atomic resolution - you can see the atoms poking right out there! Obviously, it will 'see' any molecules that are placed on the surface.That takes care of the molecular addressing. The next and really neat aspect of this approach is that the information output can be optical. When electrons flow between the tip and the sample (either direction is OK), some light is generated. If a molecule is sitting in there, the light output can have more to do with the molecule than the properties of either the tip or the underlying substrate. There are then two further steps that the project will try to address. First, we would like a 'smart' molecule on the surface, preferably one that can change shape and properties between two different, stable states. Such molecules actually exist and we intend using a remarkably simple one called azobenzene. The idea is to change the state of the molecule by an electrical (voltage) pulse applied to the tip and see if the light output changes. (Or, conversely, address the molecule with an external light pulse and monitor a change in its conductivity.) The second thing is to improve the optical output and here we have some ideas on really tiny antenna. To get a feel for this, think about the receiving antenna or ariel on your TV. It's size is in the 0.1 to 1 m range and that's because it's designed to match the wavelength of the TV carrier signal - about 0.4m for a signal of frequency 750 MHz. Scaling to the optical/near-infrared region (wavelength 400-1000 nm) implies an antenna length of a few 100 nm. Such antenna will be realized on the basis of fascinating entities known as carbon nanotubes. These are a whole story in themselves, but the important point in relation to this work is that they can be grown perpendicularly out of a surface. The nanotubes we will use will be 25-50 nm in diameter and several 100 nm long. The idea is to custom manufacture the STM tip as an optical antenna so that it efficiency transmits optical information from individually addressed molecules.
想象一个光源如此之小,以至于它能够从单个分子中产生信息。这就是这个项目背后的想法。但我们为什么要这么做呢?背景简介是这样运行的。电子设备的尺寸不断缩小,以便在更小的空间内以更快的速度产生更大的处理能力;数据存储设备中基本内存元素的大小也是如此。然而,向100纳米以下尺寸(1纳米是1毫米的百万分之一)的驱动是基于将传统的图案技术推向新的极限;它基本上是十多年前用于生产微米级产品的旧技术的粉饰版。与其一点一点地解决尺寸问题,难道不能用一种更具革命性的方式来处理吗?例如,是否有可能制造基于单分子的加工元件?这将使处理元件的尺寸降至1纳米左右。但我们如何评估这种可能性呢?实际上,这不是很好的思想实验。要做到这一点,我们需要处理单个分子并从中读取信息。用来做这项工作的仪器被称为扫描隧道显微镜,简称STM。它可以将导电尖端与导电表面保持极短的距离(1纳米或更短)。当在尖端和表面之间施加偏压时,一些电子穿过间隙-小电流流动(pA到nA刻度)。这是通过一种被称为隧道效应的量子力学过程发生的——从“经典”物理学的角度来看,没有电流应该流过,因为缝隙是电绝缘的!正如你可能猜到的,有一些非常漂亮的反馈涉及到保持尖端在样品上方1纳米的固定距离。然后STM可以以一种可控的方式移动尖端,以原子分辨率建立样品表面的图像-你可以看到原子就在那里!显然,它会“看到”放置在表面上的任何分子。这就解决了分子的寻址问题。这种方法的下一个非常简洁的方面是信息输出可以是光学的。当电子在尖端和样品之间流动时(任何一个方向都可以),就会产生一些光。如果有一个分子在那里,那么光输出与分子的关系可能比尖端或底层基质的性质更大。然后,该项目将尝试解决两个进一步的步骤。首先,我们希望在表面上有一个“智能”分子,最好是能够在两种不同的稳定状态之间改变形状和性质的分子。这样的分子确实存在,我们打算使用一种非常简单的分子,叫做偶氮苯。这个想法是通过施加在尖端的电(电压)脉冲来改变分子的状态,并观察光输出是否发生变化。(或者,反过来,用外部光脉冲处理分子并监测其电导率的变化。)第二件事是提高光输出,这里我们有一些关于微型天线的想法。要感受一下这一点,想想电视上的接收天线或ariel。它的尺寸在0.1到1米之间,这是因为它的设计是为了匹配电视载波信号的波长——频率为750兆赫的信号约为0.4米。缩放到光学/近红外区域(波长400- 1000nm)意味着天线长度只有几个100nm。这种天线将在被称为碳纳米管的迷人实体的基础上实现。它们本身就是一个完整的故事,但与这项工作相关的重要一点是,它们可以从表面垂直生长。我们将使用的纳米管直径为25-50纳米,长100纳米。这个想法是定制制造STM尖端作为光学天线,这样它就能有效地传输来自单独定位分子的光学信息。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission.
- DOI:10.1038/s41598-017-03766-x
- 发表时间:2017-06-14
- 期刊:
- 影响因子:4.6
- 作者:Kalathingal V;Dawson P;Mitra J
- 通讯作者:Mitra J
Scanning tunneling microscope light emission: Effect of the strong dc field on junction plasmons
- DOI:10.1103/physrevb.94.035443
- 发表时间:2016-07-26
- 期刊:
- 影响因子:3.7
- 作者:Kalathingal, Vijith;Dawson, Paul;Mitra, J.
- 通讯作者:Mitra, J.
Photon Emission at Step Edges of Single Crystalline Gold Surfaces Investigated by Scanning Tunnelling Microscopy
- DOI:10.1143/jjap.45.2119
- 发表时间:2006-03
- 期刊:
- 影响因子:1.5
- 作者:M. Boyle;J. Mitra;P. Dawson
- 通讯作者:M. Boyle;J. Mitra;P. Dawson
The tip-sample water bridge and light emission from scanning tunnelling microscopy.
扫描隧道显微镜的尖端样品水桥和光发射。
- DOI:10.1088/0957-4484/20/33/335202
- 发表时间:2009
- 期刊:
- 影响因子:3.5
- 作者:Boyle MG
- 通讯作者:Boyle MG
Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering.
- DOI:10.1039/c7fd00128b
- 发表时间:2017-11
- 期刊:
- 影响因子:3.4
- 作者:P. Dawson;D. Frey;Vijith Kalathingal;R. Mehfuz;J. Mitra
- 通讯作者:P. Dawson;D. Frey;Vijith Kalathingal;R. Mehfuz;J. Mitra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Dawson其他文献
Evaluation of a national surveillance system for mortality alerts: a mixed-methods study
国家死亡警报监测系统的评估:混合方法研究
- DOI:
10.3310/hsdr06070 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
P. Aylin;A. Bottle;S. Burnett;E. Cecil;Kathryn Charles;Paul Dawson;D. D'Lima;A. Esmail;C. Vincent;Samantha Wilkinson;J. Benn - 通讯作者:
J. Benn
Loss of placental sulphate transporter <em>Slc13a4</em> causes severe developmental defects and embryonic lethality
- DOI:
10.1016/j.placenta.2014.06.313 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Joanna Rakoczy;Paul Dawson;David Simmons - 通讯作者:
David Simmons
Letter to the Editor re Suspected Plagiarism
- DOI:
10.1007/s10494-012-9396-x - 发表时间:
2012-05-05 - 期刊:
- 影响因子:2.400
- 作者:
Clyde Warsop;Martyn Hucker;Andrew J. Press;Paul Dawson - 通讯作者:
Paul Dawson
Political Ideology Affects College Student Eating Habits
政治意识形态影响大学生饮食习惯
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
JK Northcutt;Armstrong;Beasley;J. Couture;S. Dorn;Dow;Harness;Sonefelt;Paul Dawson - 通讯作者:
Paul Dawson
Creativity — Narrativity — Fictionality: A Critical Genealogy
创造力——叙事——虚构:一个重要的谱系
- DOI:
10.1353/pan.2024.a916697 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Paul Dawson - 通讯作者:
Paul Dawson
Paul Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Dawson', 18)}}的其他基金
A plasmonic antenna for magneto-optical imaging at the deep nanoscale
用于深纳米级磁光成像的等离子体天线
- 批准号:
EP/I038411/1 - 财政年份:2012
- 资助金额:
$ 66.95万 - 项目类别:
Research Grant
Resistive-metal-electrode Schottky diodes for temperature sensing
用于温度传感的电阻金属电极肖特基二极管
- 批准号:
EP/G000433/1 - 财政年份:2008
- 资助金额:
$ 66.95万 - 项目类别:
Research Grant
A Workshop on Deformation Processing of Metals
金属变形加工研讨会
- 批准号:
9119908 - 财政年份:1991
- 资助金额:
$ 66.95万 - 项目类别:
Standard Grant
Modeling Deformation Induced Texture in Titanium Using Analytic Solutions for Single Crystal Response
使用单晶响应的解析解对钛中变形引起的织构进行建模
- 批准号:
9114861 - 财政年份:1991
- 资助金额:
$ 66.95万 - 项目类别:
Continuing grant
Engineering Research Equipment Grant: High Performance LoadFrame for Deformation Processes Research
工程研究设备补助金:用于变形过程研究的高性能负载框架
- 批准号:
8704994 - 财政年份:1987
- 资助金额:
$ 66.95万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Modeling of Plastic Flow and Microstructure Development During Forming Processes
总统青年研究员奖:成型过程中塑性流动和微观结构发展的建模
- 批准号:
8352275 - 财政年份:1984
- 资助金额:
$ 66.95万 - 项目类别:
Continuing grant
Strain-Dependent Viscoplastic Primary Forming Models
应变相关的粘塑性一次成型模型
- 批准号:
8105605 - 财政年份:1981
- 资助金额:
$ 66.95万 - 项目类别:
Continuing grant
The Rational Allocation of Time to Electoral Participation
合理分配参选时间
- 批准号:
7708237 - 财政年份:1977
- 资助金额:
$ 66.95万 - 项目类别:
Standard Grant
相似国自然基金
蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
- 批准号:21177017
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
气体中电爆金属丝制备纳米粉体的机制研究
- 批准号:50677034
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Imaging at the speed of spikes: An electro-optical multiphoton microscope
以尖峰速度成像:光电多光子显微镜
- 批准号:
10516843 - 财政年份:2022
- 资助金额:
$ 66.95万 - 项目类别:
An electro-mechanical mechanism of spike propagation in myelinated axons
有髓轴突中尖峰传播的机电机制
- 批准号:
10194107 - 财政年份:2021
- 资助金额:
$ 66.95万 - 项目类别:
Miniaturized head-mounted device for pan-cortical electro-optical activity monitoring
用于全皮层电光活动监测的小型头戴式设备
- 批准号:
10607996 - 财政年份:2019
- 资助金额:
$ 66.95万 - 项目类别:
Miniaturized head-mounted device for pan-cortical electro-optical activity monitoring
用于全皮层电光活动监测的小型头戴式设备
- 批准号:
10132419 - 财政年份:2019
- 资助金额:
$ 66.95万 - 项目类别:
Miniaturized head-mounted device for pan-cortical electro-optical activity monitoring
用于全皮层电光活动监测的小型头戴式设备
- 批准号:
10377399 - 财政年份:2019
- 资助金额:
$ 66.95万 - 项目类别:
Miniaturized head-mounted device for pan-cortical electro-optical activity monitoring
用于全皮层电光活动监测的小型头戴式设备
- 批准号:
9906281 - 财政年份:2019
- 资助金额:
$ 66.95万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10424488 - 财政年份:2018
- 资助金额:
$ 66.95万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10176530 - 财政年份:2018
- 资助金额:
$ 66.95万 - 项目类别:
Microfabrication Platform for Guided-Wave Optics and Micro-electro-mechanical Systems Integration
导波光学和微机电系统集成微加工平台
- 批准号:
470175-2014 - 财政年份:2015
- 资助金额:
$ 66.95万 - 项目类别:
Collaborative Research and Development Grants
Integrated plasmonics amd Electro-optics
集成等离子体和电光
- 批准号:
366136-2009 - 财政年份:2014
- 资助金额:
$ 66.95万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




