A Test of Quantum Electrodynamics at High Fields

高场量子电动力学测试

基本信息

  • 批准号:
    EP/D068509/1
  • 负责人:
  • 金额:
    $ 64.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Quantum electrodynamics (QED) was the first quantum field theory to be formulated providing a radically new description of the electromagnetic force. So far it has successfully passed every experimental test at low and intermediate fields. A well-known example of QED effects at low fields, of the order of 10^9 V/cm, is the Lamb shift in hydrogen. At such low fields, the QED effects can still be treated perturbatively, only taking into account low order terms. However, up to now QED has never been tested at very much higher fields than this because of the practical difficulties of producing such fields in the laboratory. At high fields, perturbative QED is no longer valid, and higher order terms need to be evaluated carefully. Experiments carried out at high fields therefore test different aspects of QED and are complementary to high precision tests of the low order terms. Since quantum field theories are the cornerstone of modern physics testing these theories in the non-perturbative limit is extremely important. Heavy atoms that have been stripped of almost all their electrons are ideal 'laboratories' for tests of QED at high fields. These ions have electric field strengths of the order of 10^15 V/cm close to the nucleus. Such highly charged ions (HCI) can now be produced at the experimental storage ring (ESR) at GSI in Darmstadt, Germany. In the HITRAP facility being built at GSI, these ions will be slowed, trapped and cooled down to sub-eV energies, and made available to a wide variety of experiments. Our group has been involved in the planning stages of this facility and it has been our responsibility to design the laser spectroscopy experiments to test QED at high fields. The early stages of this work have been funded through a European Union FP5 collaboration (also called HITRAP). Now that the completion of the facility is in sight the various groups involved must seek funding at the national level to complete the project. Hydrogen-like (one electron) and lithium-like (three electrons) highly charged ions in particular are excellent examples of systems that allow for accurate studies of QED effects at high fields. The ground state hyperfine splitting (HFS) in these species probes the validity of QED at the extremely high fields found very close to the nucleus. Due to their simple electronic structure, accurate QED calculations can be performed for these systems, which could be compared for the first time with the accurate experimental results we wish to obtain. The only proposed method of disentangling the QED effects from nuclear effects, such as the Bohr-Weisskopf (BW) effect, is by measuring the ground state HFS in both H-like and Li-like ions. From the difference between these two HFS the BW effect can effectively be eliminated. This allows for a determination of the QED effects with an accuracy of the order of a few percent. In neutral atoms hyperfine transitions are weak transitions in the microwave region of the spectrum. In (HCI) the electric fields involved push these transitions into the visible region of the spectrum and increase their transition rates. H- and Li-like bismuth ions are of interest because the wavelengths corresponding to these hyperfine transitions are both accessible with standard lasers. A common experimental obstacle in previous measurements made in a storage ring was the Doppler width and shift of the transition due to the relativistic velocities of the ions. Other measurements performed in an EBIT (electron beam ion trap) are not as severely subject to this effect, but suffer from a low signal-to-background ratio. We propose to trap highly charged ions in a Penning trap, cool and compress the ions into a small cloud, and measure ground state hyperfine splittings by means of laser spectroscopy, with an accuracy of the order of 10-7. Preparatory work will be performed at Imperial College but the final experiments will be performed at the HITRAP facility in Germany.
量子电动力学(QED)是第一个被公式化的量子场理论,为电磁力提供了全新的描述。到目前为止,它已经成功地通过了中低场的所有实验测试。在10^9V/cm量级的低场下QED效应的一个著名例子是氢的兰姆位移。在这样的低场下,QED效应仍然可以微扰处理,只考虑低阶项。然而,到目前为止,QED从未在比这更高的领域进行过测试,因为在实验室生产这样的领域存在实际困难。在高场下,微扰QED不再有效,需要仔细计算高阶项。因此,在高场下进行的实验测试了QED的不同方面,并且是对低阶项的高精度测试的补充。由于量子场论是现代物理学的基石,因此在非微扰极限下检验这些理论是非常重要的。几乎所有电子都被剥离的重原子是在高场下进行QED测试的理想实验室。这些离子在原子核附近的电场强度约为10^15V/cm。这种高电荷态离子(HCI)现在可以在德国达姆施塔特GSI的实验存储环(ESR)上产生。在GSI正在建造的HITRAP设施中,这些离子将被减慢、捕获并冷却到亚电子伏能量,并可用于各种实验。我们小组已经参与了这个设施的规划阶段,我们的责任是设计激光光谱学实验,以在高场下测试QED。这项工作的早期阶段是通过欧洲联盟FP5合作(也称为HITRAP)提供资金的。现在,该设施即将完工,各有关团体必须在国家一级寻求资金,以完成该项目。尤其是类氢(一个电子)和类锂(三个电子)高电荷离子,是允许在高场下精确研究QED效应的系统的极好例子。这些物种中的基态超精细分裂(HFS)在离原子核非常近的极高场中探测QED的有效性。由于它们简单的电子结构,可以对这些系统进行精确的QED计算,这可以第一次与我们希望获得的准确的实验结果进行比较。将QED效应与玻尔-魏斯柯夫(BW)效应等核效应分离的唯一方法是通过测量类H离子和类Li离子中的基态HFS。从这两个HF之间的差异可以有效地消除BW效应。这使得对QED效应的确定具有数量级的几个百分点的精度。在中性原子中,超精细跃迁是光谱中微波区域的微弱跃迁。在(HCI)中,所涉及的电场将这些跃迁推进到光谱的可见光区域,并增加了它们的跃迁速率。类氢和类锂铋离子之所以令人感兴趣,是因为与这些超精细跃迁相对应的波长都可以用标准激光访问。在以前的存储环测量中,一个常见的实验障碍是由于离子的相对论速度导致的多普勒宽度和跃迁。在EBIT(电子束离子陷阱)中进行的其他测量不会受到这种影响的严重影响,但会受到低信号背景比的影响。我们建议将高电荷态离子囚禁在Penning陷阱中,冷却并压缩成小云,并利用激光光谱测量基态超精细分裂,精度为10-7数量级。准备工作将在帝国理工学院进行,但最后的实验将在德国的HITRAP设施进行。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions
  • DOI:
    10.1103/physreva.87.033423
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Z. Andelkovic;R. Cazan;W. Nortershauser;S. Bharadia;D. Segal;R. Thompson;R. Johren;J. Vollbrecht;V. Hannen;M. Vogel
  • 通讯作者:
    Z. Andelkovic;R. Cazan;W. Nortershauser;S. Bharadia;D. Segal;R. Thompson;R. Johren;J. Vollbrecht;V. Hannen;M. Vogel
Population dynamics in sideband cooling of trapped ions outside the Lamb-Dicke regime
  • DOI:
    10.1103/physreva.99.013423
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Joshi;P. Hrmo;V. Jarlaud;F. Oehl;R. Thompson
  • 通讯作者:
    M. Joshi;P. Hrmo;V. Jarlaud;F. Oehl;R. Thompson
Optical sideband spectroscopy of a single ion in a Penning trap
  • DOI:
    10.1103/physreva.89.032502
  • 发表时间:
    2014-03-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mavadia, S.;Stutter, G.;Segal, D. M.
  • 通讯作者:
    Segal, D. M.
Rapid crystallization of externally produced ions in a Penning trap
外部产生的离子在潘宁阱中快速结晶
  • DOI:
    10.1103/physreva.94.043410
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Murböck T
  • 通讯作者:
    Murböck T
The hyperfine puzzle of strong-field bound-state QED
强场束缚态QED的超精细难题
  • DOI:
    10.1007/s10751-019-1569-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nörtershäuser W
  • 通讯作者:
    Nörtershäuser W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Thompson其他文献

Facilitating Hemostasis After Proximal Aortic Surgery: Results of The PROTECT Trial.
促进近端主动脉手术后的止血:PROTECT 试验的结果。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    A. Khoynezhad;J. Delarosa;M. Moon;W. Brinkman;Richard Thompson;N. Desai;S. C. Malaisrie;L. Girardi;J. Bavaria;T. B. Reece
  • 通讯作者:
    T. B. Reece
Internalizing Problems: A Potential Pathway from Child Maltreatment to Adolescent Smoking
内化问题:从虐待儿童到青少年吸烟的潜在途径
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terri Lewis;J. Kotch;T. Wiley;A. Litrownik;D. English;Richard Thompson;A. Zolotor;D. Stephanie;Block;H. Dubowitz
  • 通讯作者:
    H. Dubowitz
Is the Promissory Note of Personality as Vulnerability to Depression in Default? Reply to Zuroff, Mongrain, and Santor (2004).
人格期票是否是默认的抑郁症易感性?
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Coyne;Richard Thompson;V. Whiffen
  • 通讯作者:
    V. Whiffen
Cognitive−behavioral treatment for posttraumatic nightmares: An investigation of predictors of dropout and outcome.
创伤后噩梦的认知行为治疗:对辍学和结果预测因素的调查。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Cook;Richard Thompson;Gerlinde C Harb;R. Ross
  • 通讯作者:
    R. Ross
A Shotgun Injury to the Buttocks; Getting to the Heart of the Matter.
臀部被霰弹枪打伤;
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Arneill;C. Parris;Richard Thompson;B. Clements
  • 通讯作者:
    B. Clements

Richard Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Thompson', 18)}}的其他基金

Lost at Sea - where are all the tyre particles? (TYRE-LOSS)
迷失在海上 - 所有轮胎颗粒都在哪里?
  • 批准号:
    NE/V00185X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Biodegradable Bioplastics - Assessing Environmental Risk (BIO-PLASTIC-RISK)
可生物降解的生物塑料 - 评估环境风险 (BIO-PLASTIC-RISK)
  • 批准号:
    NE/V007556/1
  • 财政年份:
    2020
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Current and Future Effects of Microplastics on Marine Shelf Ecosystems (MINIMISE)
微塑料对海洋陆架生态系统当前和未来的影响(MINIMISE)
  • 批准号:
    NE/S003967/1
  • 财政年份:
    2019
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Optimal control for robust ion trap quantum logic
稳健离子阱量子逻辑的优化控制
  • 批准号:
    EP/P024890/1
  • 财政年份:
    2017
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Distinguishing realistic environmental risks of nanoplastics by investigating fate and toxicology in real-world scenarios
通过研究现实场景中的命运和毒理学来区分纳米塑料的现实环境风险
  • 批准号:
    NE/N006305/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Finding WDM Network Topographies that are Nonblocking without Wavelength Interchange
寻找无波长交换的无阻塞 WDM 网络拓扑
  • 批准号:
    1307643
  • 财政年份:
    2013
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Standard Grant
Adsorption and Adhesion on Semi-Crystalline Polymers
半结晶聚合物的吸附和粘附
  • 批准号:
    EP/G032874/1
  • 财政年份:
    2009
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Collaborative Research: Determination of Oceanic Copper and Zinc using Biosensor Technology
合作研究:利用生物传感器技术测定海洋铜和锌
  • 批准号:
    0425564
  • 财政年份:
    2004
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Standard Grant
Novel Optical Biosensors for Hazardous Ions
用于有害离子的新型光学生物传感器
  • 批准号:
    0097442
  • 财政年份:
    2001
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Continuing Grant
1997 Presidential Awardee
1997年总统奖获得者
  • 批准号:
    9811795
  • 财政年份:
    1998
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Light-matter interactions in realistic settings: unifying open quantum systems with macroscopic quantum electrodynamics
现实环境中的光与物质相互作用:将开放量子系统与宏观量子电动力学统一起来
  • 批准号:
    2888362
  • 财政年份:
    2023
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Studentship
Scalable cavity quantum electrodynamics
可扩展腔量子电动力学
  • 批准号:
    2745597
  • 财政年份:
    2022
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Studentship
Waveguide quantum electrodynamics on superconducting circuits and its applications
超导电路中的波导量子电动力学及其应用
  • 批准号:
    22H04937
  • 财政年份:
    2022
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CAREER: Dynamically Reconfigurable Cavity Quantum Electrodynamics with Solid-State Quantum Emitters
职业:采用固态量子发射器的动态可重构腔量子电动力学
  • 批准号:
    2143172
  • 财政年份:
    2022
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Continuing Grant
Electrodynamics of topological and quantum materials
拓扑和量子材料的电动力学
  • 批准号:
    RGPIN-2018-06737
  • 财政年份:
    2022
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Entanglement, Transport and Collective Effects in Few-Photon Many-Emitter Chiral Waveguide Quantum Electrodynamics
LEAPS-MPS:少光子多发射体手性波导量子电动力学中的纠缠、输运和集体效应
  • 批准号:
    2212860
  • 财政年份:
    2022
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Standard Grant
CAREER: Exploring Nonlinear Electrodynamics from Topology and Correlation in Layered Quantum Materials
职业:从层状量子材料的拓扑和相关性探索非线性电动力学
  • 批准号:
    2143426
  • 财政年份:
    2022
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Continuing Grant
Embracing gauge-freedom in ultrastrong-coupling quantum electrodynamics
在超强耦合量子电动力学中拥抱规范自由
  • 批准号:
    EP/V048562/1
  • 财政年份:
    2021
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Research Grant
Electrodynamics of topological and quantum materials
拓扑和量子材料的电动力学
  • 批准号:
    RGPIN-2018-06737
  • 财政年份:
    2021
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Discovery Grants Program - Individual
CCI Phase 1: NSF Center for Quantum Electrodynamics for Selective Transformations (QuEST)
CCI 第一阶段:NSF 选择性转变量子电动力学中心 (QuEST)
  • 批准号:
    2124398
  • 财政年份:
    2021
  • 资助金额:
    $ 64.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了