Langevin Algorithms : Questions at the Numerical Analysis / Applied Probability Interface

Langevin 算法:数值分析/应用概率接口的问题

基本信息

  • 批准号:
    EP/D505607/1
  • 负责人:
  • 金额:
    $ 15.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Randomly evolving phenomena are often mathematically described by so-called Stochastic (Partial) Differential Equations (SPDE), which essentially give update rules for how the system is to evolve in any given infinitesimally small time instance. Mathematicians, statisticians and more generally scientists in many areas are interested in this area as they form plausible models for diverse problems ranging from the price of a stock to the movement of a molecule. They are also of interest in more abstract settings for exploring complex parameter spaces for statistical inference.Commonly, interest is in how such a system will behave "on average'over a long period of time. This is termed the * steady state' behaviour of the system. For example, a piece of string tied at both ends is subject to constant perturbations from surrounding molecules, and thus continually flutuates, but we might be interested in its average position. If we try to simulate such a random system, we need to follow the update rules in discrete time. This is an approximation of the true continuous-time dynamics, but for sufficiently fine time-discretisation, this approximation ought to have some claim to being a good one. However, the steady state of the system might not be adequately approximated by this method. Fortunately an easy way to correct for the error in estimating averages exists in the guise of the so-called Metropolis-Hastings algorithm which occasionally rejects an update move in favour of staying at the same location.If we use large time steps in this discretisation, the Metropolis-Hastings rejection moves will be required often, and the overall continuous-time dynamics will not be well approximated. However since interest is in steady state behaviour, this is not necessarily a problem. On the other hand if time steps are too large, then a large proportion of proposed moves will be rejected which will adversely affect the estimation of steady state.This project is all about devising random algorithms which can efficiently simulate from approximations to SPDEs in order to estimate properties of their steady state behaviour. There are two types of question we will answer. Firstly we will consider the problem of choosing an efficient SPDE which resembles its "average1 behaviour in a relatively short time period. Secondly, we shall consider how to optimally choose the time-dicretisation rules to maximise the efficiency of the algorithm for estimating steady state properties.
随机演化现象通常由所谓的随机(偏)微分方程(SPDE)来数学描述,它本质上给出了系统在任何给定的无穷小时间实例中如何演化的更新规则。数学家、统计学家和更广泛地说,许多领域的科学家都对这一领域感兴趣,因为他们为从股票价格到分子运动的各种问题建立了可信的模型。他们还对探索复杂参数空间以进行统计推理的更抽象的设置感兴趣。通常,感兴趣的是这样一个系统在很长一段时间内的平均表现。这被称为系统的*稳态行为。例如,绑在两端的一根线受到周围分子的持续扰动,因此不断地颤动,但我们可能对它的平均位置感兴趣。如果我们试图模拟这样一个随机系统,我们需要遵循离散时间的更新规则。这是真正的连续时间动力学的近似值,但对于足够精细的时间离散化,这个近似值应该是一个很好的近似值。然而,这种方法可能不能很好地逼近系统的稳态。幸运的是,在所谓的Metropolis-Hastings算法的伪装下,有一种简单的方法可以纠正估计平均值中的错误,该算法偶尔会拒绝更新移动,而支持停留在同一位置。如果我们在这种离散化中使用大的时间步长,将经常需要Metropolis-Hastings拒绝移动,并且整体连续时间动态将不能很好地逼近。然而,由于人们对稳定状态的行为感兴趣,这不一定是一个问题。另一方面,如果时间步长太大,那么很大一部分建议的移动将被拒绝,这将对稳态估计产生不利影响。该项目旨在设计能够有效地模拟从近似到SPDEs的随机算法,以便估计其稳态行为的性质。我们将回答两类问题。首先,我们将考虑选择一个有效的SPDE的问题,该SPDE类似于它在相对较短的时间段内的“平均行为”。其次,我们将考虑如何最优地选择时间分解规则,以最大化估计稳态性质的算法的效率。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MCMC Methods for Sampling Function Space
函数空间采样的 MCMC 方法
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N/a Beskos
  • 通讯作者:
    N/a Beskos
MCMC methods for diffusion bridges
  • DOI:
    10.1142/s0219493708002378
  • 发表时间:
    2008-09
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    A. Beskos;G. Roberts;A. Stuart;J. Voss
  • 通讯作者:
    A. Beskos;G. Roberts;A. Stuart;J. Voss
A factorisation of diffusion measure and finite sample path constructions
Exact Monte Carlo simulation of killed diffusions
抑制扩散的精确蒙特卡罗模拟
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Roberts其他文献

Analysis of Apple Flavours: The Use of Volatile Organic Compounds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling
苹果口味分析:利用挥发性有机化合物解决品种差异以及消费者欣赏与香气分析之间的相关性
  • DOI:
    10.1155/2020/8497259
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gareth Roberts;N. Spadafora
  • 通讯作者:
    N. Spadafora
An experimental study of social selection and frequency of interaction in linguistic diversity
语言多样性中社会选择和互动频率的实验研究
  • DOI:
    10.1075/is.11.1.06rob
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Social biases modulate the loss of redundant forms in the cultural evolution of language
社会偏见调节语言文化演化中冗余形式的丧失
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gareth Roberts;Maryia Fedzechkina
  • 通讯作者:
    Maryia Fedzechkina
Perspectives on Language as a Source of Social Markers
  • DOI:
    10.1111/lnc3.12052
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gareth Roberts
  • 通讯作者:
    Gareth Roberts
Gender-based segregation in education, jobs and earnings in South Africa
  • DOI:
    10.1016/j.wdp.2021.100348
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gareth Roberts;Volker Schöer
  • 通讯作者:
    Volker Schöer

Gareth Roberts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Roberts', 18)}}的其他基金

On intelligenCE And Networks - Synergistic research in Bayesian Statistics, Microeconomics and Computer Sciences - OCEAN
论智能与网络 - 贝叶斯统计、微观经济学和计算机科学的协同研究 - OCEAN
  • 批准号:
    EP/Y014650/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
  • 批准号:
    EP/X028119/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
Key factors in the emergence of combinatorial structure: An experimental and computational approach
组合结构出现的关键因素:实验和计算方法
  • 批准号:
    1946882
  • 财政年份:
    2020
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Standard Grant
CoSInES (COmputational Statistical INference for Engineering and Security)
CoSInES(工程和安全计算统计推断)
  • 批准号:
    EP/R034710/1
  • 财政年份:
    2018
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
The FIREsIdE International Collaboration: FIre Radiative powEr validation, Intercomparison & fire emissions Estimation
FIREsIdE 国际合作:火灾辐射功率验证、比对
  • 批准号:
    NE/M017958/1
  • 财政年份:
    2015
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
Intractable Likelihood: New Challenges from Modern Applications (ILike)
棘手的可能性:现代应用的新挑战(Ilike)
  • 批准号:
    EP/K014463/1
  • 财政年份:
    2013
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
RUI: Investigating Central Configurations in the N-Body and N-Vortex Problems
RUI:研究 N 体和 N 涡问题中的中心配置
  • 批准号:
    1211675
  • 财政年份:
    2012
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Standard Grant
A longitudinal model for the spread of bovine tuberculosis
牛结核病传播的纵向模型
  • 批准号:
    BB/I013482/1
  • 财政年份:
    2011
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
InFER: Likelihood-based Inference for Epidemic Risk
InFER:基于可能性的流行病风险推断
  • 批准号:
    BB/H00811X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
Inference for Diffusions and Related Processes
扩散推理及相关过程
  • 批准号:
    EP/G026521/1
  • 财政年份:
    2009
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了