Mathematical methods for boundary layers
边界层的数学方法
基本信息
- 批准号:EP/D507855/1
- 负责人:
- 金额:$ 4.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Training Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When a gas or liquid flows at high speed past an aerofoil (like an aeroplane wing, or a turbine blade) thin regions of high shear form close to the aerofoil surface, which are called boundary layers. Boundary layers play a crucial role in determining the flow around the aerofoil, e.g. if there were no boundary layers, a wing could not generate any lift, but the boundary layers also contribute significantly to the drag on the wing. This drag increases sharply if the boundary layer becomes turbulent. If the boundary layers separate from the aerofoil near the leading edge the lift reduces and the drag increases (the wing stalls). These phenomena are of central importance in the aerospace industries, but boundary layers can form whenever fluid flows through, or around, a device at speed. This summer school is concerned with teaching UK based engineering PhD students about the mathematical techniques used in current research that help us to understand, and perhaps ultimately control, boundary layer separation and transition to turbulence. The relation between analytical mathematical results and numerical results will be explored, and the benefits of combining the two identified.
当气体或液体以高速流过机翼(如机翼或涡轮机叶片)时,在靠近机翼表面处形成高剪切的薄区域,称为边界层。边界层在确定翼型周围的流动中起着至关重要的作用,例如,如果没有边界层,机翼就不能产生任何升力,但边界层也对机翼上的阻力有很大的贡献。如果附面层变成紊流,这个阻力就会急剧增加.如果附面层在前缘附近与翼型分离,升力减小,阻力增加(机翼失速)。这些现象在航空航天工业中至关重要,但是当流体高速流过或围绕设备流动时,就会形成边界层。这个暑期学校关注的是教英国的工程博士生关于当前研究中使用的数学技术,帮助我们理解,也许最终控制,边界层分离和过渡到湍流。分析数学结果和数值结果之间的关系将被探讨,并确定两者相结合的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Healey其他文献
Ian Morris: Why the west rules—for now: the patterns of history, and what they reveal about the future
- DOI:
10.1007/s12571-011-0133-4 - 发表时间:
2011-07-12 - 期刊:
- 影响因子:6.200
- 作者:
Jonathan Healey - 通讯作者:
Jonathan Healey
Jonathan Healey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Healey', 18)}}的其他基金
Poverty, Poor Relief and Economic Development in Engand. c. 1590-1720
恩加德的贫困、贫困救济和经济发展。
- 批准号:
ES/G022526/1 - 财政年份:2009
- 资助金额:
$ 4.34万 - 项目类别:
Fellowship
Modelling of breakup processes in transient Diesel fuel sprays
瞬态柴油喷雾的分解过程建模
- 批准号:
EP/G000034/1 - 财政年份:2009
- 资助金额:
$ 4.34万 - 项目类别:
Research Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on numerical tracking methods for moving boundary and mathematical analysis of interface motion
运动边界数值跟踪方法及界面运动数学分析研究
- 批准号:
21740079 - 财政年份:2009
- 资助金额:
$ 4.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
- 批准号:
11640159 - 财政年份:1999
- 资助金额:
$ 4.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Studies of melting, solidification and growth phenomena in material science
材料科学中熔化、凝固和生长现象的数学研究
- 批准号:
09354001 - 财政年份:1997
- 资助金额:
$ 4.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
- 批准号:
09640170 - 财政年份:1997
- 资助金额:
$ 4.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Studies of singularities governed by nonlinear phenomena
非线性现象控制的奇点的数学研究
- 批准号:
08404005 - 财政年份:1996
- 资助金额:
$ 4.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Sciences: Asymptotic and Singular Perturbation Methods for Bifurcation and Moving Boundary Problems with Applications
数学科学:分岔和移动边界问题的渐近奇异摄动方法及其应用
- 批准号:
9001402 - 财政年份:1990
- 资助金额:
$ 4.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Complementary Pivoting and Boundary Integral Methods
数学科学:互补旋转和边界积分方法
- 批准号:
8805682 - 财政年份:1988
- 资助金额:
$ 4.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Element Methods for IntegralEquations of the First Kind Governing 3-D Problems
数学科学:处理 3-D 问题的第一类积分方程的边界元方法
- 批准号:
8704463 - 财政年份:1987
- 资助金额:
$ 4.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Phase Fields Methods for Free Boundary Problems
数学科学:自由边界问题的相场方法
- 批准号:
8796231 - 财政年份:1986
- 资助金额:
$ 4.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Coupling of Boundary Integral and Finite Elements Methods for Inhomogeneous, Exterior Transmission Problems
数学科学:非均匀外部传输问题的边界积分和有限元方法的耦合
- 批准号:
8603954 - 财政年份:1986
- 资助金额:
$ 4.34万 - 项目类别:
Continuing Grant