Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
基本信息
- 批准号:11640159
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We mainly investigated partial differential equations related to a variational problem via the discrete Morse semiflows. Our main interest is on sets of singular points of a solutions. Such sets has sometimes big energy concentrate on it. So, we can cosider that our purpose is on treating the energy concentration phenomena on the singularity of solutions. In this stand point of view, we treated the following type of problems :(1) Develop a prallel machine for solving mininizing problems,(2) Develop a Numerical method via a minimization process,(3) Develop a method to solve both parabolic and hyperbolic equations via minimizing.For these problems, we have developped a 8-CPU parallel computer for solving minimizing problems. By use of this, we did a numerical copmutations to catch the structure of singularities for eikonal equation, Ginzburg-Landau system, and smestics liquid crystal problems. Basic method due to discrete Morse semiflow for parabolic and hyperbolic problems.We also solved the asymptotic behavior of solitary wave solutions for BBM-Burgers equations.Moreover we developped a software to solve hyperbolic free boundary problems. This is based on the smoothing method of a equation and we can get good results even when the free boundary changes its topology.We summed up these results into 8 papers (appeared or in press) and 2 preprint (submitted).
本文主要研究与变分问题有关的偏微分方程的离散莫尔斯半流问题。我们的主要兴趣是对集的奇点的解决方案。这样的集合有时会有很大的能量集中在它上面,所以我们可以认为我们的目的是处理解的奇异性上的能量集中现象。本文从这一观点出发,研究了以下几类问题:(1)发展一个求解极小化问题的并行机,(2)发展一个通过极小化过程的数值方法,(3)发展一个通过极小化求解抛物型和双曲型方程的方法,针对这些问题,我们发展了一个求解极小化问题的8-CPU并行机。利用这一点,我们对程函方程、Ginzburg-Landau系统和液晶问题的奇异性结构进行了数值变换。利用离散的莫尔斯半流方法,给出了抛物型和双曲型方程的基本方法,并解决了BBM-Burgers方程孤立波解的渐近性态,开发了求解双曲型自由边界问题的软件。这是基于方程的光滑化方法,即使自由边界拓扑发生变化,也能得到很好的结果,我们将这些结果归纳为8篇论文(已发表或出版)和2篇预印本(已提交)。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kikuchi,S.Omata: "A free boundary problem for a one dimensional hyperbolic equation"Adv.Math.Sci.Appl.. 10 No.1. 775-786 (1999)
K.Kikuchi,S.Omata:“一维双曲方程的自由边界问题”Adv.Math.Sci.Appl.. 10 No.1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Imai,K.Kikuchi,K.Nakane,S.Omata,T.Tachikawa: "A Numerical Approach to the Asymptotic Bbehavior of Solutions of a One-Dimensional Free Boundary Problem of Hyperbolic Type"Japan Journal of Industrial and Applied Mathematics. 18(1). 43-58 (2001)
H.Imai,K.Kikuchi,K.Nakane,S.Omata,T.Tachikawa:“双曲型一维自由边界问题解的渐近行为的数值方法”日本工业与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nagasawa K.Nakane S.Omata: "Hyperbolic Ginzburg Landau system" Nonliear Analysis. to appear.
T.Nagasawa K.Nakane S.Omata:“双曲 Ginzburg Landau 系统”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Kinami, M.Mei and S.Omata: "Asymptotic Toward Diffusion Waves of the Solutions for Benjamin-Bona-Mahony-Burgers Equations"Applicable Analysis. 75, (3-4). 317-340 (2000)
S.Kinami、M.Mei 和 S.Omata:“Benjamin-Bona-Mahony-Burgers 方程解的渐近扩散波”应用分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Omata, T.Okamura and K.Nakane: "Numerical analysis for the discrete Morse semiflow related to the Ginzburg Landau functional"Nonlinear Analysis. 37, No.5. 589-602 (1999)
S.Omata、T.Okamura 和 K.Nakane:“与 Ginzburg Landau 泛函相关的离散莫尔斯半流的数值分析”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OMATA Seiro其他文献
OMATA Seiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OMATA Seiro', 18)}}的其他基金
Geometric measure theory and hyperbolic operators ant its numerical calculations
几何测度论与双曲算子及其数值计算
- 批准号:
24654020 - 财政年份:2012
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Variational approach to collision, detachment and adhesion
碰撞、分离和粘附的变分方法
- 批准号:
23340024 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New topics for partial differential equations whose solution has singular sets
解具有奇异集的偏微分方程的新主题
- 批准号:
18340047 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis for nonlinear partial differential equations with singular solutions
具有奇异解的非线性偏微分方程的数学分析
- 批准号:
15340041 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
- 批准号:
09640170 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
- 批准号:
RGPIN-2017-04313 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
- 批准号:
CRC-2019-00415 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Canada Research Chairs
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual