Nanomechanical resonators at low temperatures: from classical to quantum dissipation

低温纳米机械谐振器:从经典耗散到量子耗散

基本信息

  • 批准号:
    EP/E03442X/1
  • 负责人:
  • 金额:
    $ 77.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

When you twang a guitar string it vibrates and as it does so it forces the air around it into motion, giving rise to the sound you hear. Of course the string eventually stops moving because as it sets the air in motion about it, it loses energy and so slows down. This project is about the behaviour of tiny strings, called nanomechanical resonators, which are about a million times smaller than a guitar string. The frequency, or pitch, of a note that comes from a string depends on how long the string is. For a guitar the frequency is just right for humans to hear it, but for nanomechanical resonators the frequency is much higher, about the same as for radio waves, and so is well beyond our hearing. However, it is possible to `listen` to the vibrations of a nanomechanical resonator using electrical circuitry and detect very subtle changes in the frequency of the notes.Although nanomechanical resonators are no good as musical instruments, they can be useful for a lot of other things. For example, nanomechanical resonators can be used as a fantastically sensitive set of weighing scales. Because a nanomechanical resonator itself weighs very little, placing a small object, like a biological virus, on top of the resonator changes the frequency of the vibrations in a way that depends on how much the object weighs. But there is a catch: In order to weigh things accurately we need to be able to measure very small changes in the frequency of the nanomechanical resonator, and to be able to do that the resonator must vibrate long enough at the same frequency for an accurate measurement to be made. Just like guitar strings, nanomechanical resonators don't vibrate forever. Even though all the air can be removed from around nanomechanical resonators, they still lose energy to their surroundings or even to the electrical circuitry which is used to measure them. What is worse, the smaller a nanomechanical resonator is made, the faster its vibrations tend to decay away. The key aims of this project is to carry out a series of experiments designed to help us work out why the vibrations of nanomechanical resonators damp away so fast. Once we know the reasons why nanomechanical resonators lose energy so fast to their surroundings it should be possible to improve their design to ensure that they vibrate for longer and so can be used to weigh even smaller objects, like individual molecules.
当你敲击一根吉他弦时,它会振动,当它这样做的时候,它会迫使周围的空气运动,产生你听到的声音。当然,绳子最终会停止运动,因为当它让周围的空气运动时,它会失去能量,因此速度会变慢。这个项目是关于被称为纳米机械谐振器的微小琴弦的行为,这种琴弦大约比吉他琴弦小100万倍。一根弦发出的音符的频率或音高取决于这根弦的长度。对于吉他来说,频率正好适合人类听到,但对于纳米机械谐振器来说,频率要高得多,与无线电波的频率大致相同,因此远远超出了我们的听力范围。然而,我们有可能利用电路“监听”纳米机械谐振器的振动,并检测音符频率的微妙变化。尽管纳米机械谐振器不是很好的乐器,但它们可以用来做很多其他事情。例如,纳米机械谐振器可以用作一套极其灵敏的称重秤。因为纳米机械谐振器本身的重量很小,所以在谐振器上放置一个小物体,比如生物病毒,会改变振动的频率,这种方式取决于物体的重量。但有一个问题:为了准确称重,我们需要能够测量纳米机械谐振器频率的微小变化,并且为了能够做到这一点,谐振器必须以相同的频率振动足够长的时间,才能进行准确的测量。就像吉他弦一样,纳米机械谐振器不会永远振动。即使纳米机械谐振器周围的所有空气都可以被去除,它们仍然会损失能量给周围的环境,甚至损失到用来测量它们的电路。更糟糕的是,纳米机械谐振器越小,其振动衰减的速度就越快。这个项目的主要目标是进行一系列实验,旨在帮助我们找出为什么纳米机械谐振器的振动衰减得这么快。一旦我们知道了纳米机械谐振器对周围环境的能量损失如此之快的原因,就应该有可能改进它们的设计,以确保它们振动的时间更长,从而可以用来测量更小的物体的重量,比如单个分子。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum dynamics of a mechanical resonator driven by a cavity
  • DOI:
    10.1016/j.crhy.2012.03.006
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Armour, Andrew D.;Rodrigues, Denzil A.
  • 通讯作者:
    Rodrigues, Denzil A.
Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme
  • DOI:
    10.1088/1367-2630/10/9/095004
  • 发表时间:
    2008-09-30
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Armour, A. D.;Blencowe, M. P.
  • 通讯作者:
    Blencowe, M. P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Owers-Bradley其他文献

John Owers-Bradley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Owers-Bradley', 18)}}的其他基金

Hyperpolarised Liquids for Magnetic Resonance
用于磁共振的超极化液体
  • 批准号:
    EP/N032446/1
  • 财政年份:
    2016
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Research Grant

相似海外基金

Photonic Ultra-high-Q REsonators (PURE)
光子超高 Q 谐振器 (PURE)
  • 批准号:
    EP/Z531169/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Research Grant
Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
  • 批准号:
    22KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Bioinspired optical sniffer based on microtoroid resonators and science and technology convergence
职业:基于微环形谐振器和科技融合的仿生光学嗅探器
  • 批准号:
    2237077
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Continuing Grant
High-throughput injectability screening of high concentration protein formulations by microfluidic quartz resonators
通过微流控石英谐振器对高浓度蛋白质制剂进行高通量可注射性筛选
  • 批准号:
    10760592
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
Ultrasensitive mass sensing utilizing weakly-coupled micro resonators' mode localization, with nonlinear feedback control
利用弱耦合微谐振器的模式定位和非线性反馈控制的超灵敏质量传感
  • 批准号:
    22KJ0428
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Electrically driven plasmonic light emitters strongly coupled to excitons and dielectric resonators
与激子和介电谐振器强耦合的电驱动等离子体发光体
  • 批准号:
    2309941
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Standard Grant
Superconducting resonators for high field quantum materials characterisation
用于高场量子材料表征的超导谐振器
  • 批准号:
    2892112
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Studentship
A study on integrated nonreciprocal devices using disk resonators and magneto-optical materials
使用盘式谐振器和磁光材料的集成不可逆器件的研究
  • 批准号:
    23K03977
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: IIBR Instrumentation: Photonic Band Gap Resonators for High-Field Dynamic Nuclear Polarization of Biological Macromolecules
NSF-BSF:IIBR 仪器:用于生物大分子高场动态核极化的光子带隙谐振器
  • 批准号:
    2311042
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Continuing Grant
Nanoelectromechanical resonators for qubit sensing
用于量子位传感的纳米机电谐振器
  • 批准号:
    2891575
  • 财政年份:
    2023
  • 资助金额:
    $ 77.73万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了