Data Reduction Techniques for Systematic Information Quantification in Large Scale, Multiple Spike Trains
大规模、多尖峰序列系统信息量化的数据缩减技术
基本信息
- 批准号:EP/E057152/1
- 负责人:
- 金额:$ 1.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is widely believed that the function of the brain crucially depends on the interaction between large numbers of different neuronal populations located in different brain areas. To test empirically how these neuronal populations work together to generate functions such as sensation and perception, neuroscientists record simultaneously the activity of different neuronal populations in the brain. Recording of this activity is achieved a number of different methods. Multi-electrodes have become a standard tool for studying the simultaneous activity of multiple neurons in a specific brain region or across different regions. The stimulus information encoded in the spike trains is a primary focus of research in neuroscience and is often examined in terms of various responses or features such as spike counts, mean response time, first spike latency, as well as interspike intervals and firing rate. The massive response data arrays recorded in growing number of experiments pose many challenges for data analysis and for interpreting and modelling of neuronal functions. In this feasibility study we propose to bring together the information theoretic expertises in the systems engineering, data-reduction techniques and the multivariate statistics in order to provide a method to analyse most effectively the information content of large neural populations. In particular, we consider spike trains as an information encoding and decoding process and propose to use wavelets, ICA and topographical mappings to extract, classify, quantify and organise information features contained in spike trains under the information theoretic framework; and we propose to use self-organised data reduction techniques for improved estimation of mutual information, and also to explore a number of different approaches to provide information-theoretic methods suited to the combined analysis of brain signals of different nature.
人们普遍认为,大脑的功能主要取决于位于不同大脑区域的大量不同神经元群体之间的相互作用。为了从经验上测试这些神经元群如何协同工作以产生感觉和感知等功能,神经科学家同时记录大脑中不同神经元群的活动。记录这一活动是实现了一些不同的方法。多电极已经成为研究特定大脑区域或不同区域中多个神经元同时活动的标准工具。编码在锋电位序列中的刺激信息是神经科学研究的主要焦点,并且经常根据各种反应或特征进行检查,例如锋电位计数、平均反应时间、第一锋电位潜伏期以及锋电位间期和放电率。在越来越多的实验中记录的大量反应数据阵列对数据分析以及神经元功能的解释和建模提出了许多挑战。在这项可行性研究中,我们建议将系统工程,数据简化技术和多元统计中的信息理论专家聚集在一起,以提供一种方法来最有效地分析大型神经种群的信息内容。特别地,我们把锋电位序列看作是一个信息编码和解码的过程,提出在信息论框架下,利用小波、伊卡和拓扑映射对锋电位序列中包含的信息特征进行提取、分类、量化和组织;并且我们建议使用自组织数据简化技术来改进互信息的估计,并探索多种不同的方法,以提供适合于不同性质的脑信号的组合分析的信息论方法。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe.
单神经元的潜伏期和选择性表示人体内侧颞叶中的分层处理。
- DOI:10.1523/jneurosci.1640-08.2008
- 发表时间:2008-09-03
- 期刊:
- 影响因子:0
- 作者:Mormann F;Kornblith S;Quiroga RQ;Kraskov A;Cerf M;Fried I;Koch C
- 通讯作者:Koch C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodrigo Quian Quiroga其他文献
A new approach to quantify information in real-life, complex neuroscience processes. Comment on “Kinematic coding: Measuring information in naturalistic behavior” by Becchio, Pullar, Scaliti and Panzeri
一种量化现实生活中复杂神经科学过程中信息的新方法。对 Becchio、Pullar、Scaliti 和 Panzeri 所著“运动编码:测量自然行为中的信息”的评论
- DOI:
10.1016/j.plrev.2025.03.014 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:14.300
- 作者:
Ana Sanchez Jimenez;Enrique Fernández Serra;Rodrigo Quian Quiroga - 通讯作者:
Rodrigo Quian Quiroga
Recent Developments in the study of concealed memory detection using physiological and behavioral methods
- DOI:
10.1016/j.ijpsycho.2016.07.105 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Rodrigo Quian Quiroga - 通讯作者:
Rodrigo Quian Quiroga
Concept cells
- DOI:
10.1016/j.ijpsycho.2016.07.104 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Rodrigo Quian Quiroga - 通讯作者:
Rodrigo Quian Quiroga
Lack of context modulation in human single neuron responses in the medial temporal lobe
内侧颞叶中人类单个神经元反应中缺乏情境调制
- DOI:
10.1016/j.celrep.2024.115218 - 发表时间:
2025-01-28 - 期刊:
- 影响因子:6.900
- 作者:
Hernan G. Rey;Theofanis I. Panagiotaropoulos;Lorenzo Gutierrez;Fernando J. Chaure;Alejandro Nasimbera;Santiago Cordisco;Fabian Nishida;Antonio Valentin;Gonzalo Alarcon;Mark P. Richardson;Silvia Kochen;Rodrigo Quian Quiroga - 通讯作者:
Rodrigo Quian Quiroga
Erratum to: Bayes optimal template matching for spike sorting – combining fisher discriminant analysis with optimal filtering
- DOI:
10.1007/s10827-015-0555-7 - 发表时间:
2015-04-15 - 期刊:
- 影响因子:2.000
- 作者:
Felix Franke;Rodrigo Quian Quiroga;Andreas Hierlemann;Klaus Obermayer - 通讯作者:
Klaus Obermayer
Rodrigo Quian Quiroga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodrigo Quian Quiroga', 18)}}的其他基金
Memory formation in the human medial temporal lobe
人类内侧颞叶的记忆形成
- 批准号:
BB/T001291/1 - 财政年份:2020
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
Visual Perception in Arts and Neuroscience
艺术和神经科学中的视觉感知
- 批准号:
AH/I026065/1 - 财政年份:2011
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
Ultra Low Power Implantable Platform for Next Generation Neural Interfaces
用于下一代神经接口的超低功耗植入平台
- 批准号:
EP/H051651/1 - 财政年份:2011
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
Neural Correlates of visual perception and behaviour: Analysis of multiple single-neuron recordings in humans
视觉感知和行为的神经关联:人类多个单神经元记录的分析
- 批准号:
G0701038/1 - 财政年份:2008
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
Neural coding of visual inputs in the human medial temporal lobe
人类内侧颞叶视觉输入的神经编码
- 批准号:
EP/D052254/1 - 财政年份:2006
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Clustering and dimensionality reduction based techniques for low latency big data feature extraction applications
用于低延迟大数据特征提取应用的基于聚类和降维的技术
- 批准号:
522286-2017 - 财政年份:2017
- 资助金额:
$ 1.76万 - 项目类别:
Engage Grants Program
CAREER: New Models, Representations, and Dimensionality Reduction Techniques for Structured Data Sets
职业:结构化数据集的新模型、表示和降维技术
- 批准号:
1149225 - 财政年份:2012
- 资助金额:
$ 1.76万 - 项目类别:
Continuing Grant
Efficient preprocessing for hard problems: New techniques and tight models for data reduction
难题的高效预处理:数据缩减的新技术和严格模型
- 批准号:
225019562 - 财政年份:2012
- 资助金额:
$ 1.76万 - 项目类别:
Independent Junior Research Groups
Data Reduction Techniques for Systematic Information Quantification in Large Scale, Multiple Spike Trains
大规模、多尖峰序列系统信息量化的数据缩减技术
- 批准号:
EP/E057101/1 - 财政年份:2007
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
NMR AND DATA REDUCTION TECHNIQUES FOR LARGE BIOMOLECULES
大生物分子的核磁共振和数据简化技术
- 批准号:
6448191 - 财政年份:2001
- 资助金额:
$ 1.76万 - 项目类别:
NMR AND DATA REDUCTION TECHNIQUES FOR LARGE BIOMOLECULES
大生物分子的核磁共振和数据简化技术
- 批准号:
6301754 - 财政年份:2000
- 资助金额:
$ 1.76万 - 项目类别:
NMR AND DATA REDUCTION TECHNIQUES FOR LARGE BIOMOLECULES
大生物分子的核磁共振和数据简化技术
- 批准号:
6107608 - 财政年份:1999
- 资助金额:
$ 1.76万 - 项目类别:
NMR AND DATA REDUCTION TECHNIQUES FOR LARGE BIOMOLECULES
大生物分子的核磁共振和数据简化技术
- 批准号:
6271783 - 财政年份:1998
- 资助金额:
$ 1.76万 - 项目类别:
NMR AND DATA REDUCTION TECHNIQUES FOR LARGE BIOMOLECULES
大生物分子的核磁共振和数据简化技术
- 批准号:
6240515 - 财政年份:1997
- 资助金额:
$ 1.76万 - 项目类别:
RIA: Data Reduction and New Visualization Techniques for Three-Dimensional Data Sets
RIA:三维数据集的数据缩减和新可视化技术
- 批准号:
9696024 - 财政年份:1995
- 资助金额:
$ 1.76万 - 项目类别:
Standard Grant