Unipotent and nilpotent classes in characteristic two
特征二中的单能类和幂零类
基本信息
- 批准号:EP/E063551/1
- 负责人:
- 金额:$ 2.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our proposal concerns the unipotent and nilpotent classes in simple algebraic groups and Lie algebras. Unipotent elements are fundamental to the theory ofalgebraic groups and finite groups of Lie type, and play an important role inboth the structure and representation theory. Some parts of the generaltheory of unipotent elements (e.g. results of Steinberg, Springer, Richardson, Carter, and Spaltenstein) are quite beautiful, while other parts are in anunsatisfactory state. For example, basic lists of conjugacy classesand centralizer orders of unipotent elements of groups of exceptional Lie type do exist in the literature, but the results are spread overmany papers using a variety of techniques and notations, mostly based on a massive case-by-case analysis and offering little overall conceptual understanding. Moreover, the classification of nilpotent classes in bad characteristics carried out by Holt and Spaltenstein using heavy machine computation, leaves some basic questions unanswered, such as the full structure of the centralizers. This is an area that is in need of major revision and development, and it is our goal to carrythis out. In a series of visits in 2004-6, funded by our previous grant, Seitz and I developed a new and unified approach to the unipotent and nilpotent classes in simple algebraic groups and Lie algebras, assuming that the underlying characteristic is not 2. Our main goal in this project is to carry out our new unified approach whenthe underlying characteristic is 2. This will require substantial new ideas on top of our previous work for odd characteristics. For example, even for classical Lie algebras there are still basic unanswered questions in characteristic 2, such as the precise structure of the centralizers of nilpotent elements.
我们的建议涉及到单代数群和李代数中的幂零类和幂零类。幂等元是李型代数群和有限群理论的基础,在结构理论和表示理论中都起着重要的作用。一般的幂等元理论的某些部分(如Steinberg、Springer、Richardson、Carter和Spalstein的结果)相当漂亮,而另一些部分则处于不令人满意的状态。例如,文献中确实存在例外Lie类型群的共轭类的基本列表和幂等元的中心化子阶,但结果散布在许多论文中,使用各种技巧和符号,大多基于大量的逐个案例分析,并且几乎没有提供整体的概念理解。此外,Holt和Spalstein使用重型机器计算对具有不良特征的幂零类进行的分类,留下了一些基本问题没有得到回答,例如中心化的完整结构。这是一个需要重大修改和发展的领域,这是我们的目标。在2004-2006年的一系列访问中,在我们之前的拨款的资助下,Seitz和我开发了一个新的统一方法来研究简单代数群和李代数中的幂零类,假设基本特征不是2。我们在这个项目中的主要目标是当基础特征为2时执行我们的新的统一方法。这将需要在我们之前关于奇数特征的工作的基础上有实质性的新想法。例如,即使对于经典李代数,特征2中仍然有一些基本的未回答的问题,例如幂零元素的中心化的精确结构。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras
简单代数群和李代数中的单能类和幂零类
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Liebeck, Martin W.;Seitz, Gary M.
- 通讯作者:Seitz, Gary M.
Distinguished unipotent elements and multiplicity-free subgroups of simple algebraic groups
简单代数群的杰出单能元和无重数子群
- DOI:10.2140/pjm.2015.279.357
- 发表时间:2015
- 期刊:
- 影响因子:0.6
- 作者:Liebeck M
- 通讯作者:Liebeck M
Outer unipotent classes in automorphism groups of simple algebraic groups
简单代数群自同构群中的外单能类
- DOI:10.1112/plms/pdu011
- 发表时间:2014
- 期刊:
- 影响因子:1.8
- 作者:Lawther R
- 通讯作者:Lawther R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Liebeck其他文献
Martin Liebeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Liebeck', 18)}}的其他基金
Unipotent classes, nilpotent classes and representation theory of algebraic groups
代数群的单能类、幂零类和表示论
- 批准号:
EP/I033835/1 - 财政年份:2011
- 资助金额:
$ 2.12万 - 项目类别:
Research Grant
Representation Degrees, Character Values and Applications
表征程度、特征值及应用
- 批准号:
EP/H018891/1 - 财政年份:2009
- 资助金额:
$ 2.12万 - 项目类别:
Research Grant
相似海外基金
LEAPS-MPS: Functional Identities, Nilpotent Rings, and Garside Shadows
LEAPS-MPS:功能恒等式、幂零环和 Garside Shadows
- 批准号:
2316995 - 财政年份:2023
- 资助金额:
$ 2.12万 - 项目类别:
Standard Grant
Nilpotent singularities in positive characteristic
正特征的幂零奇点
- 批准号:
2601034 - 财政年份:2021
- 资助金额:
$ 2.12万 - 项目类别:
Studentship
Nilpotent study of 3-dimensional topology
3 维拓扑的幂零研究
- 批准号:
20K03605 - 财政年份:2020
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computing with Lie groups and algebras: nilpotent orbits and applications
使用李群和代数进行计算:幂零轨道和应用
- 批准号:
DP190100317 - 财政年份:2019
- 资助金额:
$ 2.12万 - 项目类别:
Discovery Projects
Non-nilpotent matrix spaces over finite fields
有限域上的非幂零矩阵空间
- 批准号:
538285-2019 - 财政年份:2019
- 资助金额:
$ 2.12万 - 项目类别:
University Undergraduate Student Research Awards
Parabolic conjugation on nilpotent elements for classical Lie types
经典李类型的幂零元的抛物线共轭
- 批准号:
409550143 - 财政年份:2018
- 资助金额:
$ 2.12万 - 项目类别:
Research Fellowships
Density Theorems of Closed Geodesics for Nilpotent Extensions and Asymptotics of Heat Kernels
幂零扩张的闭测地线的密度定理和热核的渐进性
- 批准号:
18K03282 - 财政年份:2018
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Isoperimetric functions of nilpotent Lie groups
幂零李群的等周函数
- 批准号:
392328321 - 财政年份:2017
- 资助金额:
$ 2.12万 - 项目类别:
Research Fellowships
Characterization of the Closure of Nilpotent Operators and Normal Operator Similarity Orbits
幂零算子和正规算子相似轨道闭包的表征
- 批准号:
475008-2015 - 财政年份:2017
- 资助金额:
$ 2.12万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nilpotent subgroup complexes of finite groups and associated quiver representations
有限群的幂零子群复形及相关箭袋表示
- 批准号:
17K05161 - 财政年份:2017
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)