Unipotent classes, nilpotent classes and representation theory of algebraic groups

代数群的单能类、幂零类和表示论

基本信息

  • 批准号:
    EP/I033835/1
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Our proposal concerns the unipotent and nilpotent classes in simple algebraic groups and Lie algebras, and their relationship with representation theory. Unipotent and nilpotent elements are fundamental to the theory of algebraic groups and finite groups of Lie type, and play a major role in both the structure and representation theory of the groups. When the characteristic of the field overwhich the algebraic group is defined is good , the theories of unipotent and nilpotent classes turn out to be very closelyrelated, and actually independent of the characteristic. However, when the characteristic is bad (meaning it is 2,3 or 5, dependingon the type of algebraic group), this is not the case; for example, in bad characteristic there are usually more classesthan in good - many more, in the case of classical groups. In this proposal one of our objectives is to understand the relationship between the classes in good characteristics and thosein bad characteristics. At the outset, it is not at all clear how to define what we mean by this in a precise way. We proposeto define bundles of classes within certain parabolic subgroups in a way that is characteristic-free. In good characteristica bundle will consist of just one class, while in bad characteristic it will consist of several. The bundles will exhaust all the classes, and in this way we will obtain a conceptual link between the theories in good and bad characteristics. Classes in the same bundle should share many common properties, so this link will be potentially very useful for applications. All this is currently conjectural, and we plan to establish it on a sound footing in this proposal.
我们的建议涉及单代数群和李代数中的幂单类和幂零类,以及它们与表示论的关系。幂幺元和幂零元是代数群和李型有限群理论的基础,在群的结构和表示理论中起着重要作用。当定义代数群的域的特征是好的时,幂单类和幂零类的理论变得非常密切相关,实际上与特征无关。然而,当特征是坏的(意味着它是2,3或5,取决于代数群的类型),情况并非如此;例如,在坏特征中通常有比好特征更多的类-在经典群的情况下更多。在这个建议中,我们的目标之一是了解具有好特性的类和具有坏特性的类之间的关系。一开始,我们根本不清楚如何准确地定义我们的意思。我们提出了在某些抛物子群中定义类丛的方法,这种方法是特征自由的。在好的特性中,束将仅由一个类组成,而在坏的特性中,它将由几个类组成。这些捆绑包将耗尽所有类,这样我们将获得好特征和坏特征理论之间的概念联系。同一个bundle中的类应该共享许多公共属性,所以这个链接对应用程序可能非常有用。所有这些目前都是理论性的,我们计划在本提案中将其建立在一个坚实的基础上。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unipotent class representatives for finite classical groups
有限经典群的单能类代表
  • DOI:
    10.1515/jgth-2016-0047
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Gonshaw S
  • 通讯作者:
    Gonshaw S
Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras
简单代数群和李代数中的单能类和幂零类
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liebeck, Martin W.;Seitz, Gary M.
  • 通讯作者:
    Seitz, Gary M.
Distinguished unipotent elements and multiplicity-free subgroups of simple algebraic groups
简单代数群的杰出单能元和无重数子群
Outer unipotent classes in automorphism groups of simple algebraic groups
简单代数群自同构群中的外单能类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Liebeck其他文献

Martin Liebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Liebeck', 18)}}的其他基金

Representation Degrees, Character Values and Applications
表征程度、特征值及应用
  • 批准号:
    EP/H018891/1
  • 财政年份:
    2009
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Research Grant
Unipotent and nilpotent classes in characteristic two
特征二中的单能类和幂零类
  • 批准号:
    EP/E063551/1
  • 财政年份:
    2007
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Research Grant

相似海外基金

Applied Abstract Elementary Classes
应用抽象初级班
  • 批准号:
    2348881
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
AGS-FIRP Track 1: Application of an Ice Nucleation Cold Stage for Teaching Cloud Microphysics in Science and Engineering Classes at a Minority-serving Institution
AGS-FIRP 轨道 1:冰核冷台在少数族裔服务机构的科学和工程课程中教授云微物理的应用
  • 批准号:
    2401140
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Study of Japanese Language Teaching Methods for JSL Students through Arts and Crafts Classes
通过美术课对JSL学生进行日语教学方法研究
  • 批准号:
    23K17501
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Using Learning Logs for Developeing Critical Thinking SKills: Research on University EFL Classes
使用学习日志培养批判性思维技能:大学英语课程研究
  • 批准号:
    23K18878
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of a self-diagnosis system using logs in the area of writing in Japanese language classes
日语教室写作领域使用日志的自我诊断系统的开发
  • 批准号:
    23K02493
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Collective Regulation of Learning among Students in Music Classes
音乐课学生学习集体调节研究
  • 批准号:
    23K02162
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Classes of Electron Paramagnetic Resonance Imaging Probes With High-Spin Metal Complexes
具有高自旋金属配合物的新型电子顺磁共振成像探针
  • 批准号:
    10712009
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Development of Physical Education Classes Improvement System and Online Training Platform Based on Visualized Data
基于可视化数据的体育课堂改进系统及在线训练平台开发
  • 批准号:
    23H00958
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on the Evaluation of Coeducational Physical Education Classes: Focusing on the Gendered Evaluation
男女同校体育课评价研究:以性别评价为中心
  • 批准号:
    23K19945
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了